Hadoop作业提交多种方案具体流程详解
提交hadoop作业时我们遇到了许多的问题,在网上也查过许多的文章,有许多对hadoop提交作业原理进行分析的文章,却总看不到对具体操作过程讲解的文章,导致我们在eclipse提交的作业总是在eclipse虚拟的云环境中运行。慢慢摸索中,一个一个的作业提交方法被我们发现,呵呵,现在总结一下吧。
方案:
1、用命令行方式提交
2、在eclipse中提交作业
3、采用eclipse的插件实现项目的提交
方案一:用命令行方式提交
前提:成功搭建一个hadoop集群,或成功部署一个伪分布式,并启动hadoop。
提交过程:
1、在eclipse中将我们的项目打成一个jar包,放到hadoop的安装目录下。
2、在命令行中提交作业,这里以hadoop自带的wordcount程序为例:
(1)将统计文件传到hdfs,如图(1)
(2)向云提交作业,如图(2)
提交作业时,如果遇到错误:Name node in safe mode,可采用下面的解决方法,如图(3)
(3)列出hdfs上输出文件夹下的文件,如图(4)
(4)在命令行中打印统计好的结果,如图(5)
(注:在命令行中提交作业是按hadoop/conf下的配置文件提交的)
方案二:在eclipse中提交作业
前提:
1、在你的电脑上安装好eclipse,可以在linux下,也可以在windows环境下哦~,这里需要指出的是:提交作业的机器只要有hadoop的API就可以了,和提交作业的机器所处的环境无关。
2、成功搭建一个hadoop集群,或成功部署一个伪分布式,并启动hadoop。
提交过程:
1、在eclipse下建立一个mapreduce项目,导入hadoop的API(hadoop/lib下的包)。
这里直接从外部导入hadoop中自带的wordcount程序。为了可以直接“Run java Aplication”我修改了一点wordcount的代码,使其输入输出文件的地址直接在代码中设置。贴出代码如下:
wordcount.java:
Java代码 收藏代码
package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
//mapper类
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
//reducer类
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path("/home/hadoop/testin"));
FileOutputFormat.setOutputPath(job, new Path("/home/hadoop/testout"));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
如果此时你run java aplication,呵呵,你的程序只会在eclipse中虚拟的一个云环境中运行,而不会跑上云端去运行哦。我们一帮人在这个问题上纠结了好长时间。如果你想在云端运行,需要在main方法中添加几行代码,代码附录如下:
Java代码 收藏代码
//在你的文件地址前自动添加:hdfs://master:9000/
conf.set("fs.default.name", "hdfs://master:9000/");
conf.set("hadoop.job.user","xiaolu");
//指定jobtracker的ip和端口号,master在/etc/hosts中可以配置
conf.set("mapred.job.tracker","master:9001");
(注:如果你运行的不是master上也有的项目,比如自己实现的pagerank,那会报错如下:)
Java代码 收藏代码
java.lang.RuntimeException: java.lang.ClassNotFoundException: *.PRMapper
这时会报找不到Mapper类的错。呵呵,这个问题也卡了我们好长时间。我们分析:可能是没有将项目打包,导致云上没有mapreduce程序的缘故,我们尝试着将pagerank项目打成.jar文件,放在项目下,将main方法作出如下修改:
Java代码 收藏代码
//将Configuration类换成JobConf类
JobConf conf = new JobConf();
//设置jar
conf.setJar("pagerank.jar");
这时运行java aplication ,呵呵,结果我们成功地将作业提交到了云端。(在浏览器中浏览:master:50030)
方案三:采用eclipse的插件实现项目的提交
前提:在eclipse中成功地安装mapreduce插件。
不过需要提醒各位的是:hadoop-0.20.203.0版本自带的插件不够完整,需要作出如下修改:
1、将HADOOP_HOME/lib目录下的
commons-configuration-1.6.jar , commons-httpclient-3.0.1.jar ,
commons-lang-2.4.jar , jackson-core-asl-1.0.1.jar 和
jackson-mapper-asl-1.0.1.jar
等5个包复制到hadoop-eclipse-plugin-0.20.203.0.jar的lib目录下。
2、然后,修改该包META-INF目录下的MANIFEST.MF,将classpath修改为以下内容:
Java代码 收藏代码
Bundle-ClassPath:
classes/,lib/hadoop-core.jar,lib/commons-cli-1.2.jar,lib/commons-httpclient-3.0.1.jar,lib/jackson-core-asl-1.0.1.jar,lib/jackson-mapper-asl-1.0.1.jar,lib/commons-configuration-1.6.jar,lib/commons-lang-2.4.jar
(注:这样就完成了对hadoop-eclipse-plugin-0.20.203.0.jar的修改。如果还有其它的问题,比如Map/Reduce
Locations下添加一个Location不能弹出添加对话框,这是eclipse版本的问题,我建议大家采用eclipse的版本是:eclipse-java-indigo-SR1-linux-gtk.tar.gz。)
提交过程:
1、不用手动将项目打成jar包,run on Hadoop就OK了。呵呵~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10