在文本挖掘中,主题模型是比较特殊的一块,它的思想不同于我们常用的机器学习算法,因此这里我们需要专门来总结文本主题模型的算法。本文关注于潜在语义索引算法(LSI)的原理。
1. 文本主题模型的问题特点
在数据分析中,我们经常会进行非监督学习的聚类算法,它可以对我们的特征数据进行非监督的聚类。而主题模型也是非监督的算法,目的是得到文本按照主题的概率分布。从这个方面来说,主题模型和普通的聚类算法非常的类似。但是两者其实还是有区别的。
聚类算法关注于从样本特征的相似度方面将数据聚类。比如通过数据样本之间的欧式距离,曼哈顿距离的大小聚类等。而主题模型,顾名思义,就是对文字中隐含主题的一种建模方法。比如从“人民的名义”和“达康书记”这两个词我们很容易发现对应的文本有很大的主题相关度,但是如果通过词特征来聚类的话则很难找出,因为聚类方法不能考虑到到隐含的主题这一块。
那么如何找到隐含的主题呢?这个一个大问题。常用的方法一般都是基于统计学的生成方法。即假设以一定的概率选择了一个主题,然后以一定的概率选择当前主题的词。最后这些词组成了我们当前的文本。所有词的统计概率分布可以从语料库获得,具体如何以“一定的概率选择”,这就是各种具体的主题模型算法的任务了。
当然还有一些不是基于统计的方法,比如我们下面讲到的LSI。
2. 潜在语义索引(LSI)概述
潜在语义索引(Latent Semantic Indexing,以下简称LSI),有的文章也叫Latent Semantic Analysis(LSA)。其实是一个东西,后面我们统称LSI,它是一种简单实用的主题模型。LSI是基于奇异值分解(SVD)的方法来得到文本的主题的。而SVD及其应用我们在前面的文章也多次讲到,比如:奇异值分解(SVD)原理与在降维中的应用和矩阵分解在协同过滤推荐算法中的应用。如果大家对SVD还不熟悉,建议复习奇异值分解(SVD)原理与在降维中的应用后再读下面的内容。
这里我们简要回顾下SVD:对于一个m×n的矩阵A,可以分解为下面三个矩阵:
有时为了降低矩阵的维度到k,SVD的分解可以近似的写为:
如果把上式用到我们的主题模型,则SVD可以这样解释:我们输入的有m个文本,每个文本有n个词。而Aij则对应第i个文本的第j个词的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。SVD分解后,Uil对应第i个文本和第l个主题的相关度。Vjm对应第j个词和第m个词义的相关度。Σlm对应第l个主题和第m个词义的相关度。
也可以反过来解释:我们输入的有m个词,对应n个文本。而Aij则对应第i个词档的第j个文本的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。SVD分解后,Uil对应第i个词和第l个词义的相关度。Vjm对应第j个文本和第m个主题的相关度。Σlm对应第l个词义和第m个主题的相关度。
这样我们通过一次SVD,就可以得到文档和主题的相关度,词和词义的相关度以及词义和主题的相关度。
3. LSI简单实例
这里举一个简单的LSI实例,假设我们有下面这个有10个词三个文本的词频TF对应矩阵如下:
这里我们没有使用预处理,也没有使用TF-IDF,在实际应用中最好使用预处理后的TF-IDF值矩阵作为输入。
我们假定对应的主题数为2,则通过SVD降维后得到的三矩阵为:
从矩阵Uk我们可以看到词和词义之间的相关性。而从Vk可以看到3个文本和两个主题的相关性。大家可以看到里面有负数,所以这样得到的相关度比较难解释。
4. LSI用于文本相似度计算
在上面我们通过LSI得到的文本主题矩阵可以用于文本相似度计算。而计算方法一般是通过余弦相似度。比如对于上面的三文档两主题的例子。我们可以计算第一个文本和第二个文本的余弦相似度如下 :
sim(d1,d2)=(−0.4945)∗(−0.6458)+(0.6492)∗(−0.7194)(−0.4945)2+0.64922(−0.6458)2+(−0.7194)2
5. LSI主题模型总结
LSI是最早出现的主题模型了,它的算法原理很简单,一次奇异值分解就可以得到主题模型,同时解决词义的问题,非常漂亮。但是LSI有很多不足,导致它在当前实际的主题模型中已基本不再使用。
主要的问题有:
1) SVD计算非常的耗时,尤其是我们的文本处理,词和文本数都是非常大的,对于这样的高维度矩阵做奇异值分解是非常难的。
2) 主题值的选取对结果的影响非常大,很难选择合适的k值。
3) LSI得到的不是一个概率模型,缺乏统计基础,结果难以直观的解释。
对于问题1),主题模型非负矩阵分解(NMF)可以解决矩阵分解的速度问题。对于问题2),这是老大难了,大部分主题模型的主题的个数选取一般都是凭经验的,较新的层次狄利克雷过程(HDP)可以自动选择主题个数。对于问题3),牛人们整出了pLSI(也叫pLSA)和隐含狄利克雷分布(LDA)这类基于概率分布的主题模型来替代基于矩阵分解的主题模型。
回到LSI本身,对于一些规模较小的问题,如果想快速粗粒度的找出一些主题分布的关系,则LSI是比较好的一个选择,其他时候,如果你需要使用主题模型,推荐使用LDA和HDP。
数据分析咨询请扫描二维码
在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10在如今的数据驱动世界,数据分析师在各行各业中扮演着至关重要的角色。随着企业越来越依赖数据决策,数据分析职位的需求不断增加 ...
2024-11-10在信息爆炸的时代,做出正确的数据分析方法选择变得尤为重要。这不仅影响到数据分析的准确性,更关系到最终的决策效果。本文将详 ...
2024-11-10在当今竞争激烈的市场环境中,准确地把握市场动态和消费者需求是企业成功的关键。数据分析以其科学严谨的方法论,成为市场研究的 ...
2024-11-09在数据驱动的世界中,准确的数据分析是成功决策的基石。然而,数据分析的准确性并非一蹴而就,它需要多种方法和步骤的综合应用。 ...
2024-11-09推动银行的数字化转型是一个复杂且多维度的过程,涉及从战略、技术、组织到业务的多方面综合考量。这不仅仅是技术层面的变革,更 ...
2024-11-09国有企业作为国家经济的重要支柱,在提升经济效益和市场竞争力方面扮演着关键角色。然而,面对日益激烈的市场竞争和复杂的经济环 ...
2024-11-09