面试题-关于大数据量的分布式处理
题目:生产系统每天会产生一个日志文件F,数据量在5000W行的级别。文件F保存了两列数据,一列是来源渠道,一列是来源渠道上的用户标识。文件F用来记录当日各渠道上的所有访问用户,每访问一次,记录一条。
请问如何快速计算出各渠道上新增的用户?
问题分析:首先本次面试的是有关于分布式数据处理以及数据分析的职位,所以相关的面试题目可能会偏向于使用分布式的思想去解决。但无奈本人当时反应太慢,实在没向分布式处理方向思考。
方案一:
本题最直观的一个处理方法就是,直接拿着当日新增的5000W条访问记录一条一条的去匹配历史访问用户。若存在历史访问记录,则忽略;若不存在访问记录,则保存为新增记录。很明显,假若历史访问用户有2亿条记录,则需要和2亿条数据比较5000W次。比较次数可想而知。
由于本人一直在做基于数据库的数据处理工作,很容易就想到将历史数据保存在数据库的一张表中,并对来源渠道和用户标识这两个字段建立索引,然后遍历日志文件F(5000W次)。根据日志文件F中的每一行去匹配数据库中的历史访问记录。由于历史数据表有索引,单次查询的速度也非常快。但是需要5000W次的数据库查询,很明显效率低下。
方案二:
既然多次单一查询无法满足要求,于是可以先通过一种数据导入技术将当日新增数据导入到数据库的另一张表中,并和历史数据做左外关联。若能关联成功,则表示此用户已存在;若关联失败,则表示此用户不存在。
此方案暂且不说5000W条记录的大表与2亿条记录的大表关联效率有多高以及使用到的数据库缓冲区的资源有多少,单就5000W条访问记录导入数据库表,都是一个不小的时间花费。
方案三:
很明显,面试时方案二的回答并未达到面试官的预期,最初被遗憾的PASS掉。一家很有潜力,自己很看好的公司,并计划做为自己未来发展方向的职位,就这样丢下我,扬长而去了。
这几天又看了下分布式相关的介绍,突然想到这道题。一下子醒悟过来,其实还是因为对题目要考察的点分析得不够透彻。当时以为只是仅仅考数据处理效率的一个题目,其实考的是一种将复杂问题拆分为简单问题的拆分思想。了解到这一层,一种新的方式立马在脑海中浮现出来。具体如下:
假如现在有N(N>=2)个存储块,并存在一个函数f(来源渠道,用户标识),对于给定的一组(来源渠道,用户标识),总能将其分发到一个固定的存储块内。那么可以使用此函数将5000W行访问记录尽量均匀的分发至N个存储块上,并同时使用此函数将历史访问记录也分发至这些存储块上。由于相同的一组记录,肯定会被分配至同一个存储块,所以比较时,只需要分别比较各个存储块上当日新增记录与历史访问用户,然后将N个存储块上比较的结果汇总,即可得到最终结果。
假设历史访问用户数据已通过函数f(来源渠道,用户标识)被分发至了N个历史文件H1、H2、…、HN。则详细处理步骤如下:
1、将F中的内容使用函数f(来源渠道,用户标识),分发至文件F1、F2、…、FN内。(可开M(M>=2)个并行,且若N-M越大,同时向同一文件写入数据的概率越小)
2、将文件F1、F2、…、FN内的访问记录去重。(可开N个并行分别处理对应的N个文件)。
3、将文件Fn(1=<n<=N)去重后的结果与对应的历史文件Hn比较得出新增用户结果Rn。(可开N个并行分别处理对应的N个文件且当N足够大时,实际要处理数据的量级就会相当小)。
4、合并第3步得到的结果R1、R2、…、RN即可得到当日新增用户。(可并行)
5、为使历史数据文件H1、H2、…、HN中的数据最全,将结果R1、R2、…、RN分别写入对应的历史文件中。(可并行)
本方案主要有以下优点:
1、数据的分发、处理、合并都可并行处理,明显提高了处理效率。
2、由于每个存储块上的新增数据,只需要与它对应存储块上的历史数据比较即可,大大减少了比较次数。(对于当日每一条记录来说,都只需要与大约历史的N分之一条数据去比较)
3、基本不需要考虑历史全量数据的保存及获取问题。
本方案缺点:
1、处理方案明显变的复杂许多,不仅需要处理数据的分发,处理,还需要一个并行的快速收集方法。
2、可能需要多台服务器并行处理。
本方案难点:
1、一个稳定(对于相同的一组来源渠道和用户标识,必定会被分发至同一存储块)、快速(根据一条来源渠道和用户标识数据,可以快速的计算出它将要被分发至的存储块)、均匀(当日新增数据及历史数据都能尽量均匀的被分发至N个存储块,最理想的情况是每个存储块上分发到的数据都是总数据的N分之一)的分发函数至关重要。
2、如何分发、并行处理及汇总数据。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20