这里再重复一下标题为什么是"使用"而不是"实现":
首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高。
其次,对于数学不好的人来说,为了实现算法而去研究一堆公式是很痛苦的事情。
再次,除非他人提供的算法满足不了自己的需求,否则没必要"重复造轮子"。
下面言归正传,不了解贝叶斯算法的可以去查一下相关资料,这里只是简单介绍一下:
1.贝叶斯公式:
P(A|B)=P(AB)/P(B)
2.贝叶斯推断:
P(A|B)=P(A)×P(B|A)/P(B)
用文字表述:
后验概率=先验概率×相似度/标准化常量
而贝叶斯算法要解决的问题就是如何求出相似度,即:P(B|A)的值
3. 在scikit-learn包中提供了三种常用的朴素贝叶斯算法,下面依次说明:
1)高斯朴素贝叶斯:假设属性/特征是服从正态分布的(如下图),主要应用于数值型特征。
使用scikit-learn包中自带的数据,代码及说明如下:
>>>from sklearn import datasets ##导入包中的数据
>>> iris=datasets.load_iris() ##加载数据
>>> iris.feature_names ##显示特征名字
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
>>> iris.data ##显示数据
array([[ 5.1, 3.5, 1.4, 0.2],[ 4.9, 3. , 1.4, 0.2],[ 4.7, 3.2, 1.3, 0.2]............
>>> iris.data.size ##数据大小 ---600个
>>> iris.target_names ##显示分类的名字
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')
>>> from sklearn.naive_bayes import GaussianNB ##导入高斯朴素贝叶斯算法
>>> clf = GaussianNB() ##给算法赋一个变量,主要是为了方便使用
>>> clf.fit(iris.data, iris.target) ##开始分类。对于量特别大的样本,可以使用函数partial_fit分类,避免一次加载过多数据到内存
>>> clf.predict(iris.data[0].reshape(1,-1)) ##验证分类。标红部分特别说明:因为predict的参数是数组,data[0]是列表,所以需要转换一下
array([0])
>>> data=np.array([6,4,6,2]) ##验证分类
>>> clf.predict(data.reshape(1,-1))
array([2])
这里涉及到一个问题:如何判断数据符合正态分布? R语言里面有相关函数判断,或者直接绘图也可以看出来,但是都是P(x,y)这种可以在坐标系里面直接
画出来的情况,而例子中的数据如何确定,目前还没有搞明白,这部分后续会补上。
2)多项式分布朴素贝叶斯:常用于文本分类,特征是单词,值是单词出现的次数。
##示例来在官方文档,详细说明见第一个例子
>>> import numpy as np
>>> X = np.random.randint(5, size=(6, 100)) ##返回随机整数值:范围[0,5) 大小6*100 6行100列
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB()
>>> clf.fit(X, y)
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
>>> print(clf.predict(X[2]))
[3]
3)伯努力朴素贝叶斯:每个特征都是是布尔型,得出的结果是0或1,即出现没出现
##示例来在官方文档,详细说明见第一个例子
>>> import numpy as np
>>> X = np.random.randint(2, size=(6, 100))
>>> Y = np.array([1, 2, 3, 4, 4, 5])
>>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB()
>>> clf.fit(X, Y)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
>>> print(clf.predict(X[2]))
[3]
补充说明:此文还不完善,示例一中也有部分说明需要写,最近事情较多,后续会逐渐完善。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29