人人都应学会的4个数据分析思路
数据分析能力对于一名产品经理来说是最基本的能力。
在面试的过程中,社招会有面试官会问你以往你负责的产品的相关数据,如何看待这些数据,如何通过这些数据来做接下来的产品优化;校招的面试官可能会问小伙伴们关于分析数据的思维;在产品经理的日常工作当中,要时长盯着数据的报表来分析产品的健康程度。本文不再对一些基本的数据定义再做描述,而是从分析的思路总结了一些心得,欢迎各位一起来讨论。
1.看数据的维度
在对一款产品或者一款产品的其中的一个模块进行分析时,我们可以从两个大维度去分析数据。
首先是从广阔的视角先去查看数据,这里需要对该产品所处的行业数据有一个清晰的了解,该产品所处的行业自己所处的市场占有率的排名,一般市场占有率指的是用户的占有量,一般从行业报告可以看出大概的数据。
然后接下来需要分析这款产品的总的数据情况,比如下载量、DAU、WAU、MAU等,以及该产品的最核心的数据是什么,并且如何有可能从侧面去了解这款产品的竞品的相关数据是什么。
当了解完以上这些总体的信息,我们心中应该对自己所负责的产品有了一个宏观的概念,自己在行业内所处的位置,以及现在最需要提升哪些数据指标都有了一个清晰的认识。接下来就可以从大纬度切入到小纬度,进一步去分析一些细节的数据。例如重要的数据信息,包括用户的基本的构成信息,每个模块自己建立的漏斗信息等。一般在做分析的时候应该注意的是数据的异常现象,出现局部的极值(包括极大值和极小值)都需要进行分析。
2.什么才是好的数据指标?
在做数据分析的过程中,我们需要了解什么样的数据才是好数据,如果单纯地去看一个数据是没有太大意义的,数据本身也具有相应的欺骗性,比如从运营同学那得到了日新增用户数1W,那么单纯看这个数据没有什么意义,我们可以说这个数据很好,因为看上去很大,但是你可能没有看到同期的数据,有可能昨天的数据达到了2W。
第一,好的数据一定是首先最好是以比率的形式存在的,不要绝对数,要相对数据。
比如上面的那个数据我们换成增长率,换成环比这个数据,我们就可以进一步的了解到这个数据的好坏。
第二,就是通过对比来判断数据的好坏。
我们将数据的日增长量做成一个折线图,从折线图我们就能看出这个数据是在高点还是在低点。通过对比,我们就会得知这个数据所处的位置是什么样的。另外,通过对比不同的渠道,对比不同的版本,对比不同的用户群等不同纬度的数据,都可以从侧面反映出这个数据的真实情况。
第三,数据不是一成不变的情况,要动态的去看数据。
单纯只看一个点的数据情况是没有意义的,我们要在数据中加入时间的纬度。引入一段单位的时间去看待数据整体的变化趋势,这样才能更为客观的判断产品的健康程度。
3.发现数据异常后如何分析?
有时候从总量的角度是无法洞察出一些问题的。比如在某段时间内,下载量出现了下跌,我们需要去找到这个当中问题出现在哪里。从总量的角度看,安卓的渠道要比IOS的总量大很多,这并不能说明问题。那么我们首先需要将时间的纬度引入到当中,将这几个月纬度的数据进行对比,一定可以看到在安卓当中有一个月份的数值相比其他较低。然后我们再去看这个月份的情况。一般情况下,在找到这个异常会先从渠道的角度去分析,查看是哪个渠道发生了异常的现象。在针对性的去对渠道进行优化。
然后我们还可以从版本的角度去分析,去查看最近近期是否有新版本的更新,如果有新版本的更新,是否设置了新的功能出现了BUG等问题无法解决,导致了用户出现卸载应用的情况。当然这些角度都要加入时间的纬度去判断。
另外,数据异常也不一定是坏事情。比如在分析用户行为的过程中,如果发现了某些类别的用户的关键指标表现良好,那么就一定要分析为什么这些用户的数据表现为什么十分良好,这也是增长黑客的分析思路。比如在facebook早期发现,如果一名用户在刚使用产品的早期可以快速添加10明好友以上的用户,这类的用户的活跃程度就明显高于其他的用户。在比如airbnb在早期发现那些放置的照片十分精美的住家的出租率较好,发现了这个特性后,内部产品技术团队又进行了一次AB测试,发现果然是存在这样的优化点。
所以在早期一个关键的指标就是如何能快速提高用户添加其他好友的数量。这里需要我们从底层数据分析当中要注意对用户进行分层的处理,从不同的纬度分层找到数据异常的族群,找到共性,归纳表现良好的用户的共性,然后将其作为优化的指标进行优化。
4.关键指标应随产品阶段性变化
在做数据分析的之前,需要我们对我们分析的目标进行确认,每个阶段的目标也存在着不同的目标,是为了增强用户粘性,还是为了提升营收,或者是为了提高病毒传播系数。
比如在对渠道的判断中,不能只关心拉过来的新用户量,最重要的是我们要关心这些新拉过来的用户对产品的关键指标的影响,比如在社区产品,相比新进用户的数量更应该关心这些用户的活跃度,发布帖子的数量,点赞的数量等关键指标。换句话说更应该关注的是漏斗模型最下方的那个量,关注转化率的最底层的那个数据。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14