大数据时代信用卡产业怎么玩
大数据时代已经降临,它所带来的庞大数据资源和信息风暴为信用卡产业的发展带来了很多新的挑战和契机。在大数据时代的背景之下,银行机构如何对海量的客户数据善加利用,为信用卡用户提供差异化的服务,通过个性化的营销活动实现客户关系管理的最大价值,恐怕是眼下这个时代银行信用卡产业所面临的最大挑战之一。
事实上,许多银行在全方位了解自己的客户并与客户保持联系方面存在困难。银行积极地与客户开展互动,希望通过这种互动为银行带来盈利,然而在营销投资方面的回报却往往不尽如人意。
要为客户提供差异性的服务,银行必须先基于客户特性设定不同的策略,客户细分是协助银行将不同特性的客户进行分类的方法。目前银行通常会依据不同的业务目标产生不同的客户细分,进而搭配不同的业务手段与客户进行沟通,提供适当的产品服务以满足其需求。基于不同的目的,在银行中所建立的客户细分会随着时间而不断增加,业务人员可以依据每次活动的目的而组合产生适当的目标客户群。此外,不同的客户轮廓,不同的偏好,不同的生命周期都会影响对待方式。
大数据具有4V的特点,Volume(巨量),Variety(多样性),Vaule(价值),Velocity(处理速度快)。加上智能手机引领着网络时代来临,单纯以银行数据做好挖掘客户或细分各种静态或动态的客户群还不足以使银行在变化的市场中提高竞争力。一些先进的银行除了客户行为、产品持有等信息外,还会在分析的深度和广度上做文章,加入客户透过各渠道的查询、投诉、线上/线下行为,服务周期水平或是获取社交网络/微博对话反应等数据挖掘出有价值的信息,再运用客户需求分析方法论,精准地分析出客户需求与个性化的最适销售产品给客户。即当客户主动透过不同渠道作交易服务的同时,实时互动提供个性化最适产品推荐,不但降低营销成本,也能化解客户的防备心、提高成功率。如果能实现动态模型评分,以客户当下行为的时点驱动模型评分,还考虑最近网路浏览行为,而不仅是以上个月的模型结果来判定,这样才能真正了解客户需求做到实时的最适产品推荐。在此基础上辅以系统层面的强大支持,将分析结果推送至前台各渠道,再接收客户反馈信息,更精准的分析客户下一次需求,协同整合所有客户接触的渠道都能得到一致的最适产品推荐信息……从而形成一个互动-分析-产品提供-产品使用的良性循环。只有便捷的分析工具与营销管理无缝地整合,让银行分析巨量与多样性数据,快速地反应对客户360度真实行为的理解,进而预测客户未来行为,洞见出全新营销策略,才能赢得先机。
此外,绩效评估体系也十分重要,应能够在事前、事中、事后,了解结果。一般银行机构仅重视业绩、产品销售达成效果,难以提供目前活动需要修正哪些环节方能继续推广等决策所需的效果评估报告。最主要原因是,没有收集客户透过各渠道反馈与联系信息、渠道联系沟通的结果,作为营销活动修正优化的基础。只有获得渠道反馈信息,才能更进一步作出活动修正或取消决策,提高成功效率。
例如国内某股份制银行信用卡中心面临不活跃客户较多的难题,同时需要更加合理的规划市场活动的预算,提高投资回报率。在客户智能解决方案的帮助下,该中心对客户用卡行为、习惯等历史数据及过往市场营销活动的数据进行了分析,针对不同类别的客户分别建立了自然活跃率模型和市场活动敏感度模型,并分别实施三组不同的市场活动:对自然活跃度高和对价格敏感的客户采用高消费门槛去触动;对自然活跃率低且对价格不敏感的客户,则通过与刷卡次数绑定的礼品来进行激励;对于反应居中的客户则通过两方面兼顾的市场活动来进行激励。在项目进行过程中先根据建立的模型进行小规模验证,在确认验证结果与之前的预估基本吻合后,才按照预定方案进行大规模的市场营销活动,并在活动过程中不断根据实际反馈修正模型,再根据修正后的模型进行新一轮的活动,从而使整个营销活动效果与之前的预估十分接近。最终项目获得了极大的成功--在进行市场活动三个月以后不活跃客户的激活率提升了40%,大大超出了20%的原定目标,是项目实施前激活率的四倍;市场营销预算得到了优化,费用下降了7%。
综上所述,企业级的客户智能解决方案必须拥有灵活查询分析与数据挖掘工具,协助洞察客户需求,支持各种不同类型的营销方式,才能帮助银行打造具有竞争力的营销管理平台。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21