发达国家如何布局大数据战略
大数据在美国之所以能被迅速、广泛应用,与美国高度重视大数据价值、积极推动数据开放和拥有一批掌握核心技术的信息技术企业密切相关。
中国国际经济交流中心大数据战略课题组
最近几年,美国、欧盟、日本等主要发达经济体采取各种政策举措,积极推进国家大数据战略,取得了长足进展,成功经验值得中国借鉴。
将推动大数据产业发展上升为国家战略
美国在推进大数据应用上形成了从发展战略、法律框架到行动计划的完整布局,已实施四轮政策行动。第一轮是2012年3月,白宫发布《大数据研究和发展计划》,并成立“大数据高级指导小组”。第二轮是2013年11月,白宫推出“数据-知识-行动”计划,进一步细化了大数据改造国家治理模式、促进前沿创新、提振经济增长的路径,这是美国向数字治国、数字经济、数字城市、数字国防转型的重要举措。第三轮是2014年5月,美国总统办公室提交《大数据:把握机遇,维护价值》政策报告,强调政府部门和私人部门紧密合作,利用大数据最大限度促进增长,减少风险。第四轮是2016年 5月,白宫发布《联邦大数据研发战略计划》,在已有基础上提出美国下一步的大数据发展战略。
欧盟及其成员国已制定大数据发展战略,主要包括:数据价值链战略计划、资助“大数据”和“开放数据”领域的研究和创新活动、实施开放数据政策、促进公共资助科研实验成果和数据的使用及再利用等。欧盟力推数据价值链战略计划,用大数据改造传统治理模式,试图大幅降低公共部门成本,并促进经济和就业增长。2012年9月,欧盟委员会公布“释放欧洲云计算服务潜力”战略,旨在把欧盟打造成推广云计算服务的领先经济体,预计到2020年,大数据技术领域新增投资将为欧盟创造9570亿欧元产值,增加380万个就业岗位。2013年英国政府发布《英国数据能力发展战略规划》,并建立世界首个“开放数据研究所”。
日本把培育大数据和云计算派生出的新兴产业视为提振经济增长、优化国家治理的重要抓手。2013年6月,安倍内阁正式公布《创建最尖端信息技术国家宣言》,这一以开放大数据为核心的IT国家战略,旨在把日本建成具有“世界最高水准的广泛运用信息产业技术的社会”。
2011年,韩国科学技术政策研究院正式提出“大数据中心战略”以及“构建英特尔综合数据库”。2012年,韩国国家科学技术委员会就大数据未来发展环境发布重要战略规划。2013年,韩国未来创造科学部提出“培育1000家大数据、云计算系统相关企业”的国家级大数据发展计划,以及出台《第五次国家信息化基本计划(2013-2017)》等多项大数据发展战略。
注重数据开放共享和隐私保护
目前,全球有75个国家明确承诺要建设开放政府、推行政府数据公开,并以政府白皮书、宣言和最高首长指令等形式启动开放政府数据战略。
与此同时,各国政府加强了数据隐私保护。目前全球已有近90个国家和地区制定了保护个人信息的法律。欧盟从1995年通过《数据保护指令》以来,不断完善法律法规,加强对个人隐私数据的保护。从2002年的《隐私与电子通讯指令》到2009年的《欧洲信息缓存指令》,都是保护个人隐私的监管规定。
2016年4月,欧洲议会通过《一般数据保护条例》,以欧盟法规形式确定对个人数据的保护原则和监管方式,将于2018年5月开始实施。英国、法国、德国、爱尔兰、荷兰等国家也纷纷出台要求电信运营商和互联网企业进行数据留存的法规。2016年10月27日,美国联邦通信委员会(FCC)批准了一项消费者隐私保护规则,要求宽带服务提供商在使用消费者的网络搜索、软件使用、位置信息和其他与个人信息相关的数据之前必须征得用户同意。另外,2016年8月1日,美国和欧盟签署的“隐私盾”协议正式生效,替代以前的“安全港”协议,提高了个人数据保护水平。
重视大数据重大项目研究与应用,占领大数据产业和技术制高点
发达国家以点带面引导大数据发展,通过资助重大项目研究,破解大数据发展核心技术,引导企业和社会推动大数据发展。2012年3月,美国发布《大数据研究和发展计划》时宣布投资2亿美元,联合美国国家科学基金会、国家卫生研究院、国防部、能源部、国防部高级研究局、地质勘探局等6个联邦部门和机构,共同提高收集、储存、保留、管理、分析和共享海量数据所需核心技术的先进性,并形成合力。2013年1月,英国财政部明确将投入1.89亿英镑用于大数据和节能计算技术研发,旨在提升地球观测和医学等领域的大数据采集分析能力。2013年4月,英国经济和社会研究委员会又宣布新增6400万英镑用于大数据研发,其中3400万英镑用来建立“行政数据研究网络”,汇聚政府部门和机构所收集的行政数据,促进发挥政府数据对科学研究、政策制定和执行的作用。2014年,英国政府投入7300万英镑进行大数据技术开发,包括在55个政府数据分析项目中开展大数据技术应用。2013年,法国政府投入1150万欧元,用于7个大数据市场研发项目,促进大数据研发。
建立高规格的领导机构,统筹和强化部门间协作
各国战略规划都指定专门的管理机构和执行机构,其共同特点是凌驾于传统政府机构之上,突破了传统的政府管理模式,提高了决策与执行的效率。美国由白宫科学和技术政策办公室牵头建立大数据高级监督组,通过协调和扩大政府对大数据的投资、提供合作机遇、促进核心技术研发和劳动力发展等实现大数据战略目标。日本政府内阁和总务省信息通信技术(ICT)基本战略委员会作为日本大数据战略制定和执行部门,肩负制定面向2020年日本新ICT战略的任务。澳大利亚设立跨部门大数据工作组负责战略落地,同时配备专门的支撑机构,从技术、研究等角度提供支撑。英国大数据战略分别针对提高技术能力、基础设施和软硬件建设、推进合作、数据开放与共享,指定具体机构负责,同时由信息经济委员会根据发展战略制定具体实施办法。
政府营造环境,充分调动企业发展大数据的积极性
大数据在美国之所以能被迅速、广泛应用,与美国高度重视大数据价值、积极推动数据开放和拥有一批掌握核心技术的信息技术企业密切相关。谷歌、易安信、惠普、IBM、微软、甲骨文、亚马逊、Facebook等企业很早就通过收购或自主研发等方式布局大数据,成为大数据技术的主要推动者,并快速推出与大数据相关的产品和服务,为各领域、各行业应用大数据提供工具和解决方案。除了传统信息技术企业,在大数据分析、应用及安全等领域还涌现出一批像盛庞卡(Splunk)、天睿(Teradata)等创新能力较强的创业公司,在风投资本支持下快速成长,并引导新的市场发展,为各界应用大数据提供了丰富的创新工具。
强化开源社区在技术开发中的作用,打造大数据产业链的核心竞争力
从大数据技术发展历程看,大数据核心技术如分布式存储、云端分布式及网格计算均依赖开源模式,吸引全球开发者开发、维护和完善代码,从而汇集全球智慧推动大数据技术不断进步。大数据处理的核心技术哈杜普(hadoop)、映射归约(Map Reduce)和星火(Spark)等均基于开源环境的创新发展。阿帕奇软件基金会(ASF)是推动大数据技术发展的全球顶级开源社区,集结了全球最主要的大数据技术研发公司。同时,大数据领先企业也围绕自身生态打造技术开源社区,这种开源项目方式吸引了全球顶尖技术人才共同开发,推动了技术创新和成果推广。
多措并举,坚守大数据安全底线
一是构建多方协同合作的安全机制。以美国为代表,通过体制机制改革打破数据割据与封锁,整合大数据资源,协调大数据处理和分析机制,推动重点数据平台之间的数据共享,消除和控制高级可持续攻击的危害。
二是组建网络部队,增强威慑能力。2005年4月,美军正式组建专门负责网络作战的“网络战联合功能构成司令部”。日本2005年底决定组建一支由陆、海、空自卫队计算机专家组成的5000人左右的网络战部队,专门从事网络系统的攻防。2013年初,俄罗斯国防部下令要求俄总参谋部确定建立陆军网络司令部的计划。目前,世界上已有46个国家组建了网络战部队,很多国家仍在不断加大网络空间安全投入。
三是提高防范意识,加强主动防御。美国政府要求各联邦机构对所制定的安全计划,至少每隔三年执行一次独立的安全检查或审计。
四是注重“撒手锏”的战略性技术。发达国家紧紧抓住操作系统、密码专用芯片和安全处理器等“撒手锏”的战略性技术研究。
五是依托国家外交战略,促进国际合作。美国利用网络安全话题与其他国家开展外交活动,为美国信息产业谋求更大市场份额。德国推动建立和保持欧盟在世界范围内的广泛合作、联邦政府内部的合作、联邦政府信息技术特派员负责的公共和私营部门之间的合作。
六是推进军民融合,确保制信息权。美国有关机构对大数据投入巨资,目的是应对军事和国家安全领域面临的大数据挑战,提升维护国家安全和信息网络安全的能力。美国不断加强大数据资源开采,联合有关盟友组建“五眼联盟”,进行全球监控。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20