SPSS编程在Ridit分析中的应用
多样本有序分类资料(或等级资料)我们一般采用非参数检验——H检验(Kruskal-Wallis法),但其结论只得出三组或多组间总的有差别,若要知道两两间是否有差别,则没有Ridit分析只要一次就能得出两两比较结果那么方便。Ridit分析是一种关于等级资料进行对比组与标准组比较的假设检验方法,其基本思想是先确定一个标准组(常用以往积累资料或样本含量相当大的资料)作为特定总体,求得各等级的R值,标准组平均R值理论上可以证明等于0.5,其它各组与标准组比较,看其可信区间是否与0.5重叠,来判断组间的统计学显著性[1],最后得出专业解释。而Ridit分析在SPSS中却没有现成的模块,但我们可以通过编程可以方便的实现之,兹介绍下:
1. 建立或调用SPSS数据文件
某医生用三种方剂治疗某妇科病,疗效如表1,问三种方剂的疗效有无差别[2]。首先建立表1的1~4列数据文件,EFFECT:疗效(1:无效,2:好转,3:显效,4:控制);A:糖衣片频数;B:黄酮片频数;C:复方组频数。
表1 三种方剂疗效比较的SPSS数据文件(第1~4 列)及编辑后运行的各等级Ridit值计算表
疗效 糖衣片 黄酮片
A EFFECT B
② ① ③
1 48 5
2 184 16
3 77 18
4 52 19
2.SPSS程序的编制和运行
(1)在数据编辑窗口(Data Editor),通过通过菜单选择:File→New→Syntax,打开语句编辑窗口(Syntax Editor);若已经建立程序,可通过Open→Syntax直接打开。
(2)在语句编辑窗口,用键盘输入表2的程序。
表2 Ridit分析的SPSS程序(不要输入行号)
行号 程序 行号 程序
1 CREATE L=CSUM(A). 17 T-TEST
2 COMPUTE L1=LAG(L,1). 18 /TESTVAL=0
3 IF (effect=1) L1=0. 19 /VARIABLES=R
4 COMPUTE D=A/2. 20 /CRITERIA=CIN (.95) .
5 COMPUTE T=L1+D. 21 WEIGHT BY B .
6 IF (EFFECT=4) S=L. 22 T-TEST
7 SORT CASES BY EFFECT(D). 23 /TESTVAL=0
8 LOOP IF (EFFECT<4). 24 /VARIABLES=R_B
9 COMPUTE S1=LAG(S,1). 25 /CRITERIA=CIN (.95) .
10 COMPUTE S=S1. 26 WEIGHT BY C .
11 END LOOP IF (EFFECT=1). 27 T-TEST
12 COMPUTE R=T/S. 28 /TESTVAL=0
13 SORT CASES BY EFFECT(A). 29 /VARIABLES=R_C
14 COMPUTE R_B=R. 30 /CRITERIA=CIN (.95) .
15 COMPUTE R_C=R. 31 EXECUTE.
16 WEIGHT BY A .
以上程序在语句编辑窗口输入时,不要输入行号,程序中的英文字母不分大、小写。另外该程序也可在Word、记事本等其他文本编辑软件中编辑,然后只要通过复制将程序粘贴到Syntax Editor窗口。
(3)在语句编辑窗口,通过菜单选择:Run→All运行程序。
3.结果解释
以上程序是以糖衣片(A)组作为标准组计算R值,L:累积频数(为求L1的中间变量);L1:累积频数下移一行;D:标准组各等级之半;T:为L1栏加上D栏的值;S:标准组的总例数;S1(为求S的中间变量);R:标准组的R值。程序运行后,还可在Output窗口中查看到A、B、C三组的平均R值及95%的可信区间:糖衣片的平均R值为0.5,与理论相符,说明计算正确;黄酮片:平均R值为0.6493,95%CI(0.5758,0.7228);复方片:平均R值为0.5045,95%CI(0.4371,0.5718)。根据可信区间是否与标准组(理论上为0.5)相交来决定各对比组间的显著性水平,如图1,糖衣片的R值对应于0.5,复方片95%的可信区间与糖衣片平均R值(理论上为0.5)重叠,所以P>0.05,故复方片与糖衣片之间的疗效无统计学显著性,尚不能认为两者疗效间有统计学差异;而黄酮片可信区间与理论R值0.5不重叠,则P<0.05,故黄酮片与糖衣片之间的疗效存在统计学显著性;同理可知,黄酮片与复方片的可信区间也不重叠,故两者疗效存在统计学差异。
图2 标准组平均R值、对比组平均R值及95%可信区间
4.程序解释
第1~3行:计算标准组累计频数(移下一行)。CSUM(Cumulative
sum)为计算标准组的累加和L,LAG(variable,ncases)为数值型函数或字符型函数[2],返回数据集中某一变量(variable)的ncases之前的观测值所属变量的值,对第1个观察值来说,将返回缺失值(数值型变量)或空格(字符型变量)[3]。本例实际上是将变量L的值下移一行。
第4行:计算D标准组各频数之半。
第5行:计算T,即标准组各频数之半与累计频数(移下一行)之和。
第6~11行:计算标准组总例数S,其中S1是为了计算S而设定的中间变量,LOOP和END
LOOP为循环语句,必结合使用,可同时控制变量转换的次数和条件,本例中的第一次循环,对EFFECT<4的个例进行变量转换;第二次循环时,对EFFECT<3的个体进行变量变换,直至EFFECT=1,循环结束。
第12~15行:产生标准组及A组(变量A_R)和B组(变量B_R)的R值,这三组的R值是一样,其中A组与B组的R值是为了计算A、B两组的可信区间作准备。
第16~31行:分组计算糖衣片A(标准组)、黄酮片B及复方组C的95%的可信区间,可在Output窗口中查看。第16、21、26行分别对A、B、C各组的频数进行加权(Weight),第17~20行是调用T-Test程序计算标准组的平均R值。第22~25行和第27~30行为分别计算黄酮片(B组)及复方组(C组)的平均R值及95%的可信区间。
5.组内不能确定标准组时SPSS的处理方法
若标准组数量很大时,可看作总体(如上例把糖衣片看成标准组),不必计算抽样误差,将对比组作为样本进行检验。但有时相互比较的各组样本中往往并无例数很多的组别,如仍将其中一组作为标准组依照上例方法处理是不适当,这时可将各组的等级合并,以其合计数作为各等级的标准分布,计算各等级的Ridit值。在以上程序中只要利用COMPUTE命令产生一个新的变量来表示各组的等级合并,如在第1行插入:COMPUTE
Tf(合计频数)=A+B+C;再将上面的程序作适当的修改,即可算出各组的平均R值。然后用u检验公式(两组时用)或χ2检验公式(多组时用)进行假设检验[2],u值或χ2值计算可以在Transform→Compute菜单中利用软件提供的各种函数和表达式来实现,同时也可利用其中的统计函数u值累积分布函数(CDF.NORM(u,0,1))或χ2累积分布函数(CDF.CHISQ(χ2,df))直接返回相应的P值,具体过程不多加详述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30