1 replication
rep 函数能把输入的参数重复数次。另一个相关函数replicate 则能调用表达式数次。大多数情况下它们基本相等,只有当使用随机数时才会出现不同。现在,假定生成均匀分布随机数的runif 函数不是矢量化的,那么rep 函数每次都将重复相同的随机数,而replicate 每次的结果都不相同(由于历史的原因,其参数顺序竟然是从后到前的,这有点烦人):
rep(runif(1),5)
## [1] 0.3322252 0.3322252 0.3322252 0.3322252 0.3322252
replicate(5,runif(1))
## [1] 0.283310499 0.008578707 0.146623782 0.415137337 0.338364811
在更为复杂的例子中,replicate 会大显身手。例如,在蒙特卡罗(Monte Carlo)分析中——replicate 最主要的用途,你需要重复固定次数的分析过程且每次迭代都是相互独立的。
下一个例子将分析某人上下班时使用不同交通工具所花费的时间。这有些复杂,不过这是为了展示replicate 的作用,它非常适合于这种场景。
time_for_commute 函数用sample 随机挑选一种交通工具(小汽车、公交车或自行车),然后用rnorm 或rlnorm 找到一个正态分布或对数正态分布1 的行程时间(具体参数取决于所选的交通工具)。
time_for_commute <- function()
{
mode_of_transport <- sample(
c("car", "bus", "train", "bike"),
size = 1,
prob = c(0.1, 0.2, 0.3, 0.4)
)
time <- switch(
mode_of_transport,
car = rlnorm(1, log(30), 0.5),
bus = rlnorm(1, log(40), 0.5),
train = rnorm(1, 30, 10),
bike = rnorm(1, 60, 5)
)
names(time) <- mode_of_transport
time
}
switch 语句的存在使得这个函数很难被向量化。这意味着:为了找到上下班时间的分布,我们需要多次调用time_for_commute 来生成每天的数据。replicate 使我们能即刻进行向量化:
replicate(5,time_for_commute())
## bus bike train bus bike
## 21.79452 60.34375 29.05779 45.15100 57.18907
2 遍历列表
现在,你已经注意到向量化在R 中无处不在。事实上,你会很自然地选择编写向量化代码。因为它使代码看上去更精简,且与循环相比它的性能更好。不过,在某些情况下,保持矢量化意味着控制代码的方式不太自然。此时,apply 系列的函数能更自然地让你进行“伪矢量化”2。
最简单且常用的成员函数是lapply,它是“list apply”的缩写。lapply 的输入参数是某个函数,此函数将依次作用于列表中的每个元素上,并将结果返回到另一个列表中。
# 构建质因数分解列表:
prime_factors<-list(
two=2,
three=3,
four=c(2,2),
five=5,
six=c(2,3),
seven=7,
eight=c(2,2,2),
nine=c(3,3),
ten=c(2,5)
)
head(prime_factors)
## $two
## [1] 2
##
## $three
## [1] 3
##
## $four
## [1] 2 2
##
## $five
## [1] 5
##
## $six
## [1] 2 3
##
## $seven
## [1] 7
# 以向量化的方式在每个列表元素中搜索唯一值是很难做到的。我们可以写一个for 循环来逐个地检查元素,但这种方法有点笨拙:
unique_primes<-vector("list",length(prime_factors))
for(i in seq_along(prime_factors))
{
unique_primes[[i]]<-unique(prime_factors[[i]])
}
names(unique_primes)<-names(prime_factors)
unique_primes
## $two
## [1] 2
##
## $three
## [1] 3
##
## $four
## [1] 2
##
## $five
## [1] 5
##
## $six
## [1] 2 3
##
## $seven
## [1] 7
##
## $eight
## [1] 2
##
## $nine
## [1] 3
##
## $ten
## [1] 2 5
# lapply 大大简化了这种操作,你无需再用那些陈腔滥调的代码来进行长度和名称检查:
lapply(prime_factors,unique)
## $two
## [1] 2
##
## $three
## [1] 3
##
## $four
## [1] 2
##
## $five
## [1] 5
##
## $six
## [1] 2 3
##
## $seven
## [1] 7
##
## $eight
## [1] 2
##
## $nine
## [1] 3
##
## $ten
## [1] 2 5
# 如果函数的每次返回值大小相同,且你知其大小为多少,那么你可以使用lapply 的变种vapply。vapply 的含义是:应用于(apply)列表而返回向量(vector)。和前面一样,它的输入参数是一个列表和函数,但vapply 还需要第三个参数,即返回值的模板。它不直接返回列表,而是把结果简化为向量或数组:
vapply(prime_factors,length,numeric(1))
## two three four five six seven eight nine ten
## 1 1 2 1 2 1 3 2 2
如果输出不能匹配模板,那么vapply 将抛出一个错误——vapply 不如lapply 灵活,因为它输出的每个元素必须大小相同且必须事先就知道。
还有一种介于lapply 和vapply 之间的函数sapply,其含义为:简化(simplfy)列表应用。与其他两个函数类似,sapply 的输入参数也是一个列表和函数。它不需要模板,但它会尽可能地把结果简化到一个合适的向量和数组中。
prime_factors<-list(
two=2,
three=3,
four=c(2,2),
five=5,
six=c(2,3),
seven=7,
eight=c(2,2,2),
nine=c(3,3),
ten=c(2,5)
)
sapply(prime_factors,unique)
## $two
## [1] 2
##
## $three
## [1] 3
##
## $four
## [1] 2
##
## $five
## [1] 5
##
## $six
## [1] 2 3
##
## $seven
## [1] 7
##
## $eight
## [1] 2
##
## $nine
## [1] 3
##
## $ten
## [1] 2 5
sapply(prime_factors,length)
## two three four five six seven eight nine ten
## 1 1 2 1 2 1 3 2 2
sapply(prime_factors,summary)
## two three four five six seven eight nine ten
## Min. 2 3 2 5 2.00 7 2 3 2.00
## 1st Qu. 2 3 2 5 2.25 7 2 3 2.75
## Median 2 3 2 5 2.50 7 2 3 3.50
## Mean 2 3 2 5 2.50 7 2 3 3.50
## 3rd Qu. 2 3 2 5 2.75 7 2 3 4.25
## Max. 2 3 2 5 3.00 7 2 3 5.00
# 匿名函数传给lapply
complemented <- c(2, 3, 6, 18)
lapply(complemented,rep.int,times=4)
## [[1]]
## [1] 2 2 2 2
##
## [[2]]
## [1] 3 3 3 3
##
## [[3]]
## [1] 6 6 6 6
##
## [[4]]
## [1] 18 18 18 18
lapply(complemented,function(x) rep.int(4,time=x))
## [[1]]
## [1] 4 4
##
## [[2]]
## [1] 4 4 4
##
## [[3]]
## [1] 4 4 4 4 4 4
##
## [[4]]
## [1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
在极个别的情况下,你可能需要循环遍历环境(而非列表)中每个变量。对此,你可以使用专门的函数eapply。当然,在最新版本的R 中,你也可以使用lapply:
env<-new.env()
env$molien<-c(1,0,1,0,1,1,2,1,3)
env$larry<-c("Really","leery","rarely","Larry")
eapply(env,length)
## $molien
## [1] 9
##
## $larry
## [1] 4
lapply(env,length)
## $molien
## [1] 9
##
## $larry
## [1] 4
rapply 是lapply 函数的递归版本,它允许你循环遍历嵌套列表。这是个特殊的要求,且如果事先使用unlist 将数据扁平化就会使代码变得更简单。
3 遍历数组
lapply 和它的小伙伴vapply 与sapply 都可用于矩阵和数组上,但它们的行为往往不是我们想要的。这三个函数把矩阵和数组看作向量,将目标函数作用于每个元素上(沿列往下移动)。而更为常见的是,当要把函数作用于一个数组时,我们希望能按行或列应用它们。下面的例子使用matlab 包,提供了对手语言所具备的功能。
library(matlab)
##
## Attaching package: 'matlab'
##
## The following object is masked from 'package:stats':
##
## reshape
##
## The following objects are masked from 'package:utils':
##
## find, fix
##
## The following object is masked from 'package:base':
##
## sum
(magic4<-magic(4))
## [,1] [,2] [,3] [,4]
## [1,] 16 2 3 13
## [2,] 5 11 10 8
## [3,] 9 7 6 12
## [4,] 4 14 15 1
magic 函数将创建一个f 方阵:n×n 的、从1 排到n2 的数字矩阵,其行数和列数相等:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13