大数据赋能下的“互联网+医疗”
近年来,“互联网+”热度持续上升。在2018年政府工作报告中,共有7处提及“互联网+”。“做大做强新兴产业集群,实施大数据发展行动,加强新一代人工智能研发应用,在医疗、养老、教育、文化、体育等多领域推进“互联网+”,写进了对今年政府工作的建议中。而在今年两会上,多位科技大佬就健康大数据以及人工智能在“互联网+医疗”领域的应用提出建议。
人工智能辅助基层医疗
移动互联网、大数据、云计算、物联网、人工智能等数字技术有效提升了健康医疗产业的信息化、网络化、智能化水平。随着5G、区块链等新技术的突破与应用,数字技术还将为健康医疗事业带来更深远的影响。但无论是互联网+医疗还是AI+医疗,当下最亟需的应用场景其实在基层。
全国人大代表、腾讯公司董事会主席兼首席执行官马化腾建议,在医疗欠发达地区和基层机构可以率先推广人工智能辅诊等技术,如腾讯结合医疗影像与人工智能技术的“觅影”平台,目前已成为医疗机构的癌症辅助筛查工具;通过AR、VR、直播等方式,基层医生能与专家远程会诊和交流,这些都将有效改善医疗资源不足的现状,推动优质医疗资源精准下沉。
全国政协委员、搜狗公司CEO王小川建议,利用数字技术将优质资源广泛贯通至患者末端,打通医疗惠民“最后一公里”,提供“核心医院+基层卫生服务机构+数字家庭医生”三级供给模式,提升医疗效率和准确率,助推分级诊疗,力争实现每个中国家庭都有家庭医生,促进医疗全民普惠。
健康大数据应用挑战多
虽然大数据应用如火如荼,但目前实现数字技术在健康医疗事业中应用还存在诸多挑战。例如政府部门之间,医疗机构之间,医疗机构和服务企业之间都存在不同程度的数据壁垒。同时,移动互联网、大数据和人工智能等新技术与健康医疗产业融合方面还存在较多政策、标准、法规和技术壁垒。
对此,马化腾建议以云计算、大数据等数字技术为载体和手段,建立跨部门、跨领域健康医疗机构间的数据共享机制,实现健康医疗大数据的规范采集、集成共享和合规应用,提升管理和服务的精准度,助力国家建设全方位、全周期人口健康信息平台。建议立法明确管理机构、医疗机构、市场主体、患者个人等各方主体对医疗数据的权属关系。建立由政府牵头、多方参与的健康医疗领域开放创新平台,加强成熟技术和顶级专家经验共享,破解数字技术与医疗行业融合的共性难题,降低数字技术大规模推广应用的技术门槛。
“人工智能+医疗”离不开高质量的健康医疗数据,全国人大代表、科大讯飞董事长刘庆峰表示,目前,现有的优质健康医疗数据更多集中在院内诊疗过程,且以专科疾病为主,常见病、慢性病、患者行为等健康数据并不完善,制约了人工智能技术在医改任务中充分发挥作用。他建议,将智能语音技术列入国家健康医疗大数据战略发展布局。在此基础上,建立国家健康医疗语音数据应用规范,实现覆盖采集、应用和管理的全生命周期、全方位的健康医疗大数据体系。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22