Python矩阵常见运算操作实例总结
本文实例讲述了Python矩阵常见运算操作。分享给大家供大家参考,具体如下:
python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。
一.numpy的导入和使用
from numpy import *;#导入numpy的库函数
import numpy as np; #这个方式使用numpy的函数时,需要以np.开头。
二.矩阵的创建
由一维或二维数据创建矩阵
from numpy import *;
a1=array([1,2,3]);
a1=mat(a1);
创建常见的矩阵
data1=mat(zeros((3,3)));
#创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3)
data2=mat(ones((2,4)));
#创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int
data3=mat(random.rand(2,2));
#这里的random模块使用的是numpy中的random模块,random.rand(2,2)创建的是一个二维数组,需要将其转换成#matrix
data4=mat(random.randint(10,size=(3,3)));
#生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数
data5=mat(random.randint(2,8,size=(2,5));
#产生一个2-8之间的随机整数矩阵
data6=mat(eye(2,2,dtype=int));
#产生一个2*2的对角矩阵
a1=[1,2,3];
a2=mat(diag(a1));
#生成一个对角线为1、2、3的对角矩阵
三.常见的矩阵运算
1. 矩阵相乘
a1=mat([1,2]);
a2=mat([[1],[2]]);
a3=a1*a2;
#1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵
2. 矩阵点乘
矩阵对应元素相乘
a1=mat([1,1]);
a2=mat([2,2]);
a3=multiply(a1,a2);
矩阵点乘
a1=mat([2,2]);
a2=a1*2;
3.矩阵求逆,转置
矩阵求逆
a1=mat(eye(2,2)*0.5);
a2=a1.I;
#求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵
矩阵转置
a1=mat([[1,1],[0,0]]);
a2=a1.T;
4.计算矩阵对应行列的最大、最小值、和。
a1=mat([[1,1],[2,3],[4,2]]);
计算每一列、行的和
a2=a1.sum(axis=0);//列和,这里得到的是1*2的矩阵
a3=a1.sum(axis=1);//行和,这里得到的是3*1的矩阵
a4=sum(a1[1,:]);//计算第一行所有列的和,这里得到的是一个数值
计算最大、最小值和索引
a1.max();//计算a1矩阵中所有元素的最大值,这里得到的结果是一个数值
a2=max(a1[:,1]);//计算第二列的最大值,这里得到的是一个1*1的矩阵
a1[1,:].max();//计算第二行的最大值,这里得到的是一个一个数值
np.max(a1,0);//计算所有列的最大值,这里使用的是numpy中的max函数
np.max(a1,1);//计算所有行的最大值,这里得到是一个矩阵
np.argmax(a1,0);//计算所有列的最大值对应在该列中的索引
np.argmax(a1[1,:]);//计算第二行中最大值对应在改行的索引
5.矩阵的分隔和合并
矩阵的分隔,同列表和数组的分隔一致。
a=mat(ones((3,3)));
b=a[1:,1:];//分割出第二行以后的行和第二列以后的列的所有元素
矩阵的合并
a=mat(ones((2,2)));
b=mat(eye(2));
c=vstack((a,b));//按列合并,即增加行数
d=hstack((a,b));//按行合并,即行数不变,扩展列数
四.矩阵、列表、数组的转换
列表可以修改,并且列表中元素可以使不同类型的数据,如下:
l1=[[1],'hello',3];
numpy中数组,同一个数组中所有元素必须为同一个类型,有几个常见的属性:
a=array([[2],[1]]);
dimension=a.ndim;
m,n=a.shape;
number=a.size;//元素总个数
str=a.dtype;//元素的类型
numpy中的矩阵也有与数组常见的几个属性。
它们之间的转换:
a1=[[1,2],[3,2],[5,2]];//列表
a2=array(a1);//将列表转换成二维数组
a3=array(a1);//将列表转化成矩阵
a4=array(a3);//将矩阵转换成数组
a5=a3.tolist();//将矩阵转换成列表
a6=a2.tolist();//将数组转换成列表
这里可以发现三者之间的转换是非常简单的,这里需要注意的是,当列表是一维的时候,将它转换成数组和矩阵后,再通过tolist()转换成列表是不相同的,需要做一些小小的修改。如下:
a1=[1,2,3];
a2=array(a1);
a3=mat(a1);
a4=a2.tolist();//这里得到的是[1,2,3]
a5=a3.tolist();//这里得到的是[[1,2,3]]
a6=(a4 == a5);//a6=False
a7=(a4 is a5[0]);//a7=True,a5[0]=[1,2,3]
矩阵转换成数值,存在以下一种情况:
dataMat=mat([1]);
val=dataMat[0,0];//这个时候获取的就是矩阵的元素的数值,而不再是矩阵的类型
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16