大数据应用如何爬坡过坎 专家建议:避免盲目跟风
近年来,大数据在辅助政府决策、社会治理等方面发挥了诸多作用。大数据发展日新月异,要推动实施国家大数据战略,让大数据更好服务我国经济社会发展和人民生活改善,还有哪些问题亟待解决?用大数据提升国家治理能力,有哪些误区需要警惕?北京理工大学副校长、中国科学院院士梅宏,清华大学国家治理研究院执行院长、教授孟庆国接受本报专访。
大数据是提升治理能力的“富矿”,目前仍在初级应用阶段
记者:当今世界,信息技术创新日新月异,数字化、网络化、智能化深入发展,大数据应用目前处于何种发展阶段?如何理解大数据驱动国家治理能力现代化?
梅宏:大数据本质上是多个信息系统产生的数据汇聚、碰撞、融合,随着信息化进入以大数据为表征的新阶段,即以数据的深度挖掘与融合应用为特征的智能化阶段,大数据的价值和意义凸显,特别是在提升国家治理能力方面,人们寄予较高期待。但从全球范围看,大数据应用还处于初级阶段。大数据在国家治理应用中仍面临许多现实难题,在政府管理和服务民生方面有很大进步空间,例如信息系统的互联互通和数据共享问题、应用导向的数据融合分析和深度挖掘问题、信息系统的数据处理能力问题等。
孟庆国:大数据驱动国家治理能力现代化可以从三个方面来理解:一是大数据能够提升政府决策能力和治理水平,促进简政放权、“放管服”改革,实现决策科学化、管理精准化、服务智能化。二是大数据能够促进保障和改善社会民生。将大数据应用到教育、医疗、就业、住房、交通等领域,能够进一步强化民生服务的均等化、普惠化、便捷化、个性化。三是大数据能够推动社会治理模式创新。利用大数据可以综合分析社会风险因素,提高对风险因素的感知与防范能力,有利于完善党委领导、政府负责、社会协同、公众参与、法治保障的社会治理体制。
对于推进国家治理体系和治理能力现代化而言,大数据是一个“富矿”。这主要体现在“横”和“纵”两大方面。“横”的方面,体现在内容上:大数据作为国家治理的基础资源,其“富矿”功能体现在国家经济、政治、文化、社会、生态等方方面面的海量数据信息资源上。对这些“富矿”资源进行有效整合和集成,就能够为国家治理现代化提供基础数据和决策支撑。“纵”的方面,体现在过程上:推进国家治理现代化,要统筹好国家治理现代化的目标,大数据可以有效整合和集成这些过程和要素的数据信息,通过对于海量数据的处理,助力找到国家治理现代化的最优路径和战略选择。
信息孤岛的形成有技术、利益、法规等多方面原因
记者:针对国家治理能力提升,大数据应用存在哪些障碍?这些问题的原因有哪些?
梅宏:信息孤岛是我国政府数据共享开放与应用的首要障碍。信息孤岛的产生原因很多,从技术层面看,信息系统的建设均是自底向上的发展模式,容易形成多个独立模块或独立系统,而且由于技术更新换代快,也会导致新旧系统之间无法互通互联;从业务层面看,数据在很多场景下意味着权力,对于掌握数据的一些部门来说,交出数据就有可能失去业务管辖权,导致很多部门缺乏共享数据的内生动力;从法规层面看,现有的法律法规并没有明确界定哪些数据可共享、哪些不可共享,导致有的部门不敢共享也不知道该共享哪些数据。部门利益、法规缺位、技术因素,三方面导致很多业务部门不愿、不敢、不会共享数据。
记者:如何能突破信息壁垒,推进数据开放、共享和流通?
梅宏:解决信息孤岛问题有两种途径,类似于“新区”建设和“旧城”改造。一是重新规划和从头建设,针对新需求,采用新技术,建设新系统,绕开或者推倒了原有信息孤岛,自然也就不存在原有系统的互联互通问题。但是,这种建设途径周期长、成本高,对规划能力与前瞻性要求高,而且,随着需求和技术的变化,“新区”终究会成为“旧城”,新的互联互通需求又会产生。
对旧系统改造集成是解决信息孤岛问题的第二种途径,我们探索了一种技术方案,尝试用软件定义的方式来实现数据的开放和共享,通过以“黑盒”方式智能学习一个孤岛系统的内部状态和内部行为,重建其运行时体系结构,构建数据访问接口,不需要直接开放后台的系统和数据,也不需要二次开发工作,甚至不需要原开发商的参与,实现对已有数据资源的读取和修改。
此前我们用了一个月的时间在贵阳做了一次全贵阳市的数据开放共享,完成了全市50多家单位300多个系统2000多个功能项目的梳理,形成了1000多个数据访问接口和对应的数据目录,这些数据目录都是可以访问的、活化的数据资源。
数据中心建设应做好顶层规划,因地制宜并以应用需求为导向
记者:用好大数据应避免哪些误区?
梅宏:政务数据共享体系不宜一味追求物理集中,可逻辑互联先行,物理集中跟进,设定好应用场景。比如:数据应用部门提需求,数据拥有部门做响应,交换平台管理部门保流转。要实现这种场景的有效运行,应当由上级部门建立统一的数据共享交换管理机构,并将原有的由下级部门上交数据模式改为由上级部门基于接口的提取数据模式。
在发展过程中,很多地区过于注重数据中心等基础设施投入,因地制宜和应用需求导向不够,可能导致重复建设、资源浪费。数据中心建设应该做好顶层规划和示范引导,积极谋划,审慎推进。此外,在使用大数据的过程中,防止“唯数据论”。数据共享应当是以支持政府业务的融合和流程再造为目的,数据背后的管理部门需要进一步改进服务。
孟庆国:目前大数据应用有三个误区需要注意:一是以“发展”之名盲目跟风。各地区、部门搞大数据一定要结合实际,考虑现实基础和条件。二是以“创新”之名不求实际,任何事情的发展都不能一步到位,应求真务实地发展。三是以“改革”之名而“旧瓶装新酒”。如以发展大数据之名,大搞重复建设,名为信息工程的“更新换代”,实为换汤不换药。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13