大数据应用如何爬坡过坎 专家建议:避免盲目跟风
近年来,大数据在辅助政府决策、社会治理等方面发挥了诸多作用。大数据发展日新月异,要推动实施国家大数据战略,让大数据更好服务我国经济社会发展和人民生活改善,还有哪些问题亟待解决?用大数据提升国家治理能力,有哪些误区需要警惕?北京理工大学副校长、中国科学院院士梅宏,清华大学国家治理研究院执行院长、教授孟庆国接受本报专访。
大数据是提升治理能力的“富矿”,目前仍在初级应用阶段
记者:当今世界,信息技术创新日新月异,数字化、网络化、智能化深入发展,大数据应用目前处于何种发展阶段?如何理解大数据驱动国家治理能力现代化?
梅宏:大数据本质上是多个信息系统产生的数据汇聚、碰撞、融合,随着信息化进入以大数据为表征的新阶段,即以数据的深度挖掘与融合应用为特征的智能化阶段,大数据的价值和意义凸显,特别是在提升国家治理能力方面,人们寄予较高期待。但从全球范围看,大数据应用还处于初级阶段。大数据在国家治理应用中仍面临许多现实难题,在政府管理和服务民生方面有很大进步空间,例如信息系统的互联互通和数据共享问题、应用导向的数据融合分析和深度挖掘问题、信息系统的数据处理能力问题等。
孟庆国:大数据驱动国家治理能力现代化可以从三个方面来理解:一是大数据能够提升政府决策能力和治理水平,促进简政放权、“放管服”改革,实现决策科学化、管理精准化、服务智能化。二是大数据能够促进保障和改善社会民生。将大数据应用到教育、医疗、就业、住房、交通等领域,能够进一步强化民生服务的均等化、普惠化、便捷化、个性化。三是大数据能够推动社会治理模式创新。利用大数据可以综合分析社会风险因素,提高对风险因素的感知与防范能力,有利于完善党委领导、政府负责、社会协同、公众参与、法治保障的社会治理体制。
对于推进国家治理体系和治理能力现代化而言,大数据是一个“富矿”。这主要体现在“横”和“纵”两大方面。“横”的方面,体现在内容上:大数据作为国家治理的基础资源,其“富矿”功能体现在国家经济、政治、文化、社会、生态等方方面面的海量数据信息资源上。对这些“富矿”资源进行有效整合和集成,就能够为国家治理现代化提供基础数据和决策支撑。“纵”的方面,体现在过程上:推进国家治理现代化,要统筹好国家治理现代化的目标,大数据可以有效整合和集成这些过程和要素的数据信息,通过对于海量数据的处理,助力找到国家治理现代化的最优路径和战略选择。
信息孤岛的形成有技术、利益、法规等多方面原因
记者:针对国家治理能力提升,大数据应用存在哪些障碍?这些问题的原因有哪些?
梅宏:信息孤岛是我国政府数据共享开放与应用的首要障碍。信息孤岛的产生原因很多,从技术层面看,信息系统的建设均是自底向上的发展模式,容易形成多个独立模块或独立系统,而且由于技术更新换代快,也会导致新旧系统之间无法互通互联;从业务层面看,数据在很多场景下意味着权力,对于掌握数据的一些部门来说,交出数据就有可能失去业务管辖权,导致很多部门缺乏共享数据的内生动力;从法规层面看,现有的法律法规并没有明确界定哪些数据可共享、哪些不可共享,导致有的部门不敢共享也不知道该共享哪些数据。部门利益、法规缺位、技术因素,三方面导致很多业务部门不愿、不敢、不会共享数据。
记者:如何能突破信息壁垒,推进数据开放、共享和流通?
梅宏:解决信息孤岛问题有两种途径,类似于“新区”建设和“旧城”改造。一是重新规划和从头建设,针对新需求,采用新技术,建设新系统,绕开或者推倒了原有信息孤岛,自然也就不存在原有系统的互联互通问题。但是,这种建设途径周期长、成本高,对规划能力与前瞻性要求高,而且,随着需求和技术的变化,“新区”终究会成为“旧城”,新的互联互通需求又会产生。
对旧系统改造集成是解决信息孤岛问题的第二种途径,我们探索了一种技术方案,尝试用软件定义的方式来实现数据的开放和共享,通过以“黑盒”方式智能学习一个孤岛系统的内部状态和内部行为,重建其运行时体系结构,构建数据访问接口,不需要直接开放后台的系统和数据,也不需要二次开发工作,甚至不需要原开发商的参与,实现对已有数据资源的读取和修改。
此前我们用了一个月的时间在贵阳做了一次全贵阳市的数据开放共享,完成了全市50多家单位300多个系统2000多个功能项目的梳理,形成了1000多个数据访问接口和对应的数据目录,这些数据目录都是可以访问的、活化的数据资源。
数据中心建设应做好顶层规划,因地制宜并以应用需求为导向
记者:用好大数据应避免哪些误区?
梅宏:政务数据共享体系不宜一味追求物理集中,可逻辑互联先行,物理集中跟进,设定好应用场景。比如:数据应用部门提需求,数据拥有部门做响应,交换平台管理部门保流转。要实现这种场景的有效运行,应当由上级部门建立统一的数据共享交换管理机构,并将原有的由下级部门上交数据模式改为由上级部门基于接口的提取数据模式。
在发展过程中,很多地区过于注重数据中心等基础设施投入,因地制宜和应用需求导向不够,可能导致重复建设、资源浪费。数据中心建设应该做好顶层规划和示范引导,积极谋划,审慎推进。此外,在使用大数据的过程中,防止“唯数据论”。数据共享应当是以支持政府业务的融合和流程再造为目的,数据背后的管理部门需要进一步改进服务。
孟庆国:目前大数据应用有三个误区需要注意:一是以“发展”之名盲目跟风。各地区、部门搞大数据一定要结合实际,考虑现实基础和条件。二是以“创新”之名不求实际,任何事情的发展都不能一步到位,应求真务实地发展。三是以“改革”之名而“旧瓶装新酒”。如以发展大数据之名,大搞重复建设,名为信息工程的“更新换代”,实为换汤不换药。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13