下面小编就为大家分享一篇利用python将json数据转换为csv格式的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
假设.json文件中存储的数据为:
{"type": "Point", "link": "http://www.dianping.com/newhotel/22416995", "coordinates": [116.37256372996957, 40.39798447055443], "category": "经济型", "name": "北京荷塘山庄", "count": "278", "address": "北京市怀柔区黄花城村安四路", "price": "380"}
{"type": "Point", "link": "http://www.dianping.com/newhotel/19717653", "coordinates": [116.56881588256466, 40.43310967948417], "category": "经济型", "name": "慕田峪长城鱼师傅乡村酒店", "count": "89", "address": "北京市怀柔区渤海镇苇店村(慕田峪长城下3公里处,近怀黄路)", "price": "258"}
{"type": "Point", "link": "http://www.dianping.com/newhotel/58365289", "coordinates": [116.62874974822378, 40.45610264855833], "category": "经济型", "name": "北京蜜桃儿亲子客栈", "count": "119", "address": "北京市怀柔区神堂峪风景区下官地11号", "price": "549"}
现在需要将上面的这些数据存为csv格式,其中字典的keys为csv中的属性名称,字典的values为csv中属性对应的值。
如果只需要按照json的keys来生成csv,那么操作比较简单,直接按照下面的方法即可:
#-*-coding:utf-8-*-
import csv
import json
import sys
import codecs
def trans(path):
jsonData = codecs.open(path+'.json', 'r', 'utf-8')
# csvfile = open(path+'.csv', 'w') # 此处这样写会导致写出来的文件会有空行
# csvfile = open(path+'.csv', 'wb') # python2下
csvfile = open(path+'.csv', 'w', newline='') # python3下
writer = csv.writer(csvfile, delimiter='\t')
flag = True
for line in jsonData:
dic = json.loads(line[0:-1])
if flag:
# 获取属性列表
keys = list(dic.keys())
print (keys)
writer.writerow(keys) # 将属性列表写入csv中
flag = False
else:
# 读取json数据的每一行,将values数据一次一行的写入csv中
writer.writerow(list(dic.values()))
jsonData.close()
csvfile.close()
if __name__ == '__main__':
path=str(sys.argv[1]) # 获取path参数
print (path)
trans(path)
在python3下运行,命令行输入
python C:\Users\MaMQ\Documents\jsonToCsv.py C:\Users\MaMQ\Documents\data\geoFood
其中第三个参数为需要转换的文件的路径和其名称,将其后缀删除。运行文件后即可得到转换后的csv文件。
如果需要对json文件中每个字典的key字段进行修改,比如需要将上面dict中的coordinate中的经纬度数据取出来存为x、y数据,则可以按照下面的方法(此方法还可以调整每个属性显示的顺序,效果更好一点):
import csv
import json
import sys
import codecs
def trans(path):
jsonData = codecs.open(path+'.json', 'r', 'utf-8')
# csvfile = open(path+'.csv', 'w') # 此处这样写会导致写出来的文件会有空行
# csvfile = open(path+'.csv', 'wb') # python2下
csvfile = open(path+'.csv', 'w', newline='') # python3下
writer = csv.writer(csvfile, delimiter='\t')
keys=['id', 'name', 'category', 'price', 'count', 'type', 'address', 'link', 'x', 'y']
writer.writerow(keys)
i = 1
for dic in jsonData:
dic = json.loads(dic[0:-1])
x = dic['coordinates'][0]
y = dic['coordinates'][1]
writer.writerow([str(i),dic['name'],dic['category'],dic['price'],dic['count'],dic['type'],dic['address'],dic['link'],x,y])
i += 1
jsonData.close()
csvfile.close()
if __name__ == '__main__':
path = str(sys.argv[1])
print (path)
trans(path)
运行方法同上。
json文件是我在大众点评抓取的数据,存储格式为utf-8。建议使用codecs包来读取json数据,可指定编码方式。
jsonData = codecs.open(path + '.json', 'r', encoding='utf-8')
以上这篇利用python将json数据转换为csv格式的方法就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16