分类:基本概念、决策树与模型评估 分类任务就是确定对象属于那个预定义的目标类。就是通过学习得到一个目标函数f,把每个属性集映射到一个预先定义的类标号y. 一、预备知识 分类任务的输入数据是记录的集合,每条记录称为实例,用元组(x,y)表示,其中x是属性的集合,y是一个特殊的集合。 描述性建模:分类模型可以作为解释性工具,用于区分不同类中的对象. 预测性建模:分类模型还可以用于预测未知记录的类标号. 二.解决分类问题的一般方法 分类法的例子包括决策树法、基于规则的分类法、神经网络、支持向量机和朴素贝叶斯分类法。 分类模型的性能根据模型正确和错误预测的检验记录计数进行评估,这些计数存放在称作混淆矩阵的表格中。准确性=正确预测数/预测总数。 差错率:错误预测数/预测总数。 三。决策树归纳 1。决策树工作原理 树中包换三种结点: 根结点:它没有入边,但有零条或多条出边。 内部结点:恰有一条入边和两条或多条出边。 叶结点:恰有一条入边,但没有出边。 其中,每个叶结点都赋予一个类标号,非终结点(包括根结点和内部结点)包含属性测试条件,用以分开具有不同特性的记录。一旦构造了决
策树,对检验记录进行分类就是直截了当的,从树的根结点出发,将测试条件用于检验记录,根据测试结果选择适当的分支,沿着该分支或者
达到另一个内部结点,使用新的测试条件或者达到一个叶结点,叶结点的类称号就被赋值给该检验记录。 2。如何建立决策树 对于给定的属性集,可以构造的决策树数目达指数级,找出最佳的决策树在计算上是不可行的,所以通常采用贪心算法,采取一系列局部最优
决策来构造决策树。Hunt算法就是其中一种。 *Hunt算法 Hunt算法通过将训练记录相继划分成较纯的子集,以递归方式建立决策树。 决策树归纳设计问题必须解决以下两个问题:如何分裂训练记录和如何停止分裂过程。 3。表示属性测试条件的方法 二元属性:二元属性的测试条件产生两个可能的输出。 标称属性:由于标称有多个属性值,它的测试条件可以用两种方法表示,多路划分和二元划分(如:CART方法) 充数属性:也可以产生二元或多路划分。 连续属性:测试条件可以具有二元输出的比较测试(A<v)或(A>=v),也可以是具有形如:vi<=A<vi+1来划分输出的范围查询。 4。选择最佳划分的度量 为了确定测试条件的效果,需要比较父结点(划分前)的不纯程度和子女结点(划分后)的不纯程度,它们的差越大,测试条件的效果就越好
。 5。决策树归纳的特点: *决策树归纳是一种构建分类模型的非参数方法。 *找到最佳的决策树是NP完全问题。 *已开发的构建决策树技术不需要昂贵的计算代价。 *决策树相对容易解释,特别是小型的决策树。 *决策树是学习离散值函数的典型代表。 *决策树对于噪声有良好的鲁棒性。 *冗余属性不会对决策的准确率造成不利的影响。 *存在着数据碎片的问题。 *子树可能在决策树中重复多次。 四。模型的过分拟合 分类模型的误差大致分为两种:训练误差和泛化误差。一个好的分类模型不仅要能够很好地拟合训练数据,而且对未知样本也要能准确地分类
。然而,对训练集数据拟合太好的模型,其泛化误差可能比具有较高训练误差的模型高,这就是所谓的模型过分拟合。 1。噪声导致的过分拟合 也就是训练集中有被错误分类的记录。 2。缺乏代表性样本导致的过分拟合 3。过分拟合与多重比较过程 要增加一个属性测试条件,是从候选的属性集中挑一个使得增益大于某个阈值的一个属性,这样算法就会在模型上增加一些欺骗性的结点,导
致过分拟合。 4。泛化误差估计 *使用再代入估计:假设训练数据集可以很好的代表整体数据,因而可以使用训练误差提供对泛化误差的乐观估计。 *结合模型复杂度:如前所述,模型越是复杂,出现过分拟合的几率就越高,因此我们更喜欢较为简单的模型。这种策略与Occam剃刀或节俭原
则一致,Occam剃刀:给定两个具有相同泛化误差的模型,较简单的模型比较复杂的模型更可取。 五。评估分类器的性能 1。保持方法:将被标记的原始数据划分成两个不相交的集合,分别称为训练集和检验集,在训练集上归纳分类模型,在检验集上评估模型的性
能。 2。随机二次抽样:可以多次重复保持方法来改进对分类器性能的估计。 3。交叉验证:每个记录用于训练的次数相同,并且用于检验恰好一次。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03