分类:基本概念、决策树与模型评估 分类任务就是确定对象属于那个预定义的目标类。就是通过学习得到一个目标函数f,把每个属性集映射到一个预先定义的类标号y. 一、预备知识 分类任务的输入数据是记录的集合,每条记录称为实例,用元组(x,y)表示,其中x是属性的集合,y是一个特殊的集合。 描述性建模:分类模型可以作为解释性工具,用于区分不同类中的对象. 预测性建模:分类模型还可以用于预测未知记录的类标号. 二.解决分类问题的一般方法 分类法的例子包括决策树法、基于规则的分类法、神经网络、支持向量机和朴素贝叶斯分类法。 分类模型的性能根据模型正确和错误预测的检验记录计数进行评估,这些计数存放在称作混淆矩阵的表格中。准确性=正确预测数/预测总数。 差错率:错误预测数/预测总数。 三。决策树归纳 1。决策树工作原理 树中包换三种结点: 根结点:它没有入边,但有零条或多条出边。 内部结点:恰有一条入边和两条或多条出边。 叶结点:恰有一条入边,但没有出边。 其中,每个叶结点都赋予一个类标号,非终结点(包括根结点和内部结点)包含属性测试条件,用以分开具有不同特性的记录。一旦构造了决
策树,对检验记录进行分类就是直截了当的,从树的根结点出发,将测试条件用于检验记录,根据测试结果选择适当的分支,沿着该分支或者
达到另一个内部结点,使用新的测试条件或者达到一个叶结点,叶结点的类称号就被赋值给该检验记录。 2。如何建立决策树 对于给定的属性集,可以构造的决策树数目达指数级,找出最佳的决策树在计算上是不可行的,所以通常采用贪心算法,采取一系列局部最优
决策来构造决策树。Hunt算法就是其中一种。 *Hunt算法 Hunt算法通过将训练记录相继划分成较纯的子集,以递归方式建立决策树。 决策树归纳设计问题必须解决以下两个问题:如何分裂训练记录和如何停止分裂过程。 3。表示属性测试条件的方法 二元属性:二元属性的测试条件产生两个可能的输出。 标称属性:由于标称有多个属性值,它的测试条件可以用两种方法表示,多路划分和二元划分(如:CART方法) 充数属性:也可以产生二元或多路划分。 连续属性:测试条件可以具有二元输出的比较测试(A<v)或(A>=v),也可以是具有形如:vi<=A<vi+1来划分输出的范围查询。 4。选择最佳划分的度量 为了确定测试条件的效果,需要比较父结点(划分前)的不纯程度和子女结点(划分后)的不纯程度,它们的差越大,测试条件的效果就越好
。 5。决策树归纳的特点: *决策树归纳是一种构建分类模型的非参数方法。 *找到最佳的决策树是NP完全问题。 *已开发的构建决策树技术不需要昂贵的计算代价。 *决策树相对容易解释,特别是小型的决策树。 *决策树是学习离散值函数的典型代表。 *决策树对于噪声有良好的鲁棒性。 *冗余属性不会对决策的准确率造成不利的影响。 *存在着数据碎片的问题。 *子树可能在决策树中重复多次。 四。模型的过分拟合 分类模型的误差大致分为两种:训练误差和泛化误差。一个好的分类模型不仅要能够很好地拟合训练数据,而且对未知样本也要能准确地分类
。然而,对训练集数据拟合太好的模型,其泛化误差可能比具有较高训练误差的模型高,这就是所谓的模型过分拟合。 1。噪声导致的过分拟合 也就是训练集中有被错误分类的记录。 2。缺乏代表性样本导致的过分拟合 3。过分拟合与多重比较过程 要增加一个属性测试条件,是从候选的属性集中挑一个使得增益大于某个阈值的一个属性,这样算法就会在模型上增加一些欺骗性的结点,导
致过分拟合。 4。泛化误差估计 *使用再代入估计:假设训练数据集可以很好的代表整体数据,因而可以使用训练误差提供对泛化误差的乐观估计。 *结合模型复杂度:如前所述,模型越是复杂,出现过分拟合的几率就越高,因此我们更喜欢较为简单的模型。这种策略与Occam剃刀或节俭原
则一致,Occam剃刀:给定两个具有相同泛化误差的模型,较简单的模型比较复杂的模型更可取。 五。评估分类器的性能 1。保持方法:将被标记的原始数据划分成两个不相交的集合,分别称为训练集和检验集,在训练集上归纳分类模型,在检验集上评估模型的性
能。 2。随机二次抽样:可以多次重复保持方法来改进对分类器性能的估计。 3。交叉验证:每个记录用于训练的次数相同,并且用于检验恰好一次。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30