使用Python操作Elasticsearch数据索引的教程
Elasticsearch是一个分布式、Restful的搜索及分析服务器,Apache Solr一样,它也是基于Lucence的索引服务器,但我认为Elasticsearch对比Solr的优点在于:
轻量级:安装启动方便,下载文件之后一条命令就可以启动;
Schema free:可以向服务器提交任意结构的JSON对象,Solr中使用schema.xml指定了索引结构;
多索引文件支持:使用不同的index参数就能创建另一个索引文件,Solr中需要另行配置;
分布式:Solr Cloud的配置比较复杂。
环境搭建
启动Elasticsearch,访问端口在9200,通过浏览器可以查看到返回的JSON数据,Elasticsearch提交和返回的数据格式都是JSON.
>> bin/elasticsearch -f
安装官方提供的Python API,在OS X上安装后出现一些Python运行错误,是因为setuptools版本太旧引起的,删除重装后恢复正常。
>> pip install elasticsearch
索引操作
对于单条索引,可以调用create或index方法。
from datetime import datetime
from elasticsearch import Elasticsearch
es = Elasticsearch() #create a localhost server connection, or Elasticsearch("ip")
es.create(index="test-index", doc_type="test-type", id=1,
body={"any":"data", "timestamp": datetime.now()})
Elasticsearch批量索引的命令是bulk,目前Python API的文档示例较少,花了不少时间阅读源代码才弄清楚批量索引的提交格式。
from datetime import datetime
from elasticsearch import Elasticsearch
from elasticsearch import helpers
es = Elasticsearch("10.18.13.3")
j = 0
count = int(df[0].count())
actions = []
while (j < count):
action = {
"_index": "tickets-index",
"_type": "tickets",
"_id": j + 1,
"_source": {
"crawaldate":df[0][j],
"flight":df[1][j],
"price":float(df[2][j]),
"discount":float(df[3][j]),
"date":df[4][j],
"takeoff":df[5][j],
"land":df[6][j],
"source":df[7][j],
"timestamp": datetime.now()}
}
actions.append(action)
j += 1
if (len(actions) == 500000):
helpers.bulk(es, actions)
del actions[0:len(actions)]
if (len(actions) > 0):
helpers.bulk(es, actions)
del actions[0:len(actions)]
在这里发现Python API序列化JSON时对数据类型支撑比较有限,原始数据使用的NumPy.Int32必须转换为int才能索引。此外,现在的bulk操作默认是每次提交500条数据,我修改为5000甚至50000进行测试,会有索引不成功的情况。
#helpers.py source code
def streaming_bulk(client, actions, chunk_size=500, raise_on_error=False,
expand_action_callback=expand_action, **kwargs):
actions = map(expand_action_callback, actions)
# if raise on error is set, we need to collect errors per chunk before raising them
errors = []
while True:
chunk = islice(actions, chunk_size)
bulk_actions = []
for action, data in chunk:
bulk_actions.append(action)
if data is not None:
bulk_actions.append(data)
if not bulk_actions:
return
def bulk(client, actions, stats_only=False, **kwargs):
success, failed = 0, 0
# list of errors to be collected is not stats_only
errors = []
for ok, item in streaming_bulk(client, actions, **kwargs):
# go through request-reponse pairs and detect failures
if not ok:
if not stats_only:
errors.append(item)
failed += 1
else:
success += 1
return success, failed if stats_only else errors
对于索引的批量删除和更新操作,对应的文档格式如下,更新文档中的doc节点是必须的。
{
'_op_type': 'delete',
'_index': 'index-name',
'_type': 'document',
'_id': 42,
}
{
'_op_type': 'update',
'_index': 'index-name',
'_type': 'document',
'_id': 42,
'doc': {'question': 'The life, universe and everything.'}
}
常见错误
SerializationError:JSON数据序列化出错,通常是因为不支持某个节点值的数据类型
RequestError:提交数据格式不正确
ConflictError:索引ID冲突
TransportError:连接无法建立
性能
上面是使用MongoDB和Elasticsearch存储相同数据的对比,虽然服务器和操作方式都不完全相同,但可以看出数据库对批量写入还是比索引服务器更具备优势。
Elasticsearch的索引文件是自动分块,达到千万级数据对写入速度也没有影响。但在达到磁盘空间上限时,Elasticsearch出现了文件合并错误,并且大量丢失数据(共丢了100多万条),停止客户端写入后,服务器也无法自动恢复,必须手动停止。在生产环境中这点比较致命,尤其是使用非Java客户端,似乎无法在客户端获取到服务端的Java异常,这使得程序员必须很小心地处理服务端的返回信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31