浅析数据仓库的构建方法
随着不同的管理信息系统(MIS)在企业不同部门的大规模应用及企业对数据管理不断提出新的要求,不仅要求能实现传统的联机事务处理,而且越来越多的要求是各种应用系统能够在企业不断积累的以及从企业外部获取的丰富信息资源的基础上,把这些分散的、不一致的、凌乱的信息资源加以利用,即更多地参与数据分析和决策支持,由此出现了一种用于数据分析处理和决策支持的数据存储和组织技术,即数据仓库技术。
1、什么是数据仓库
数据仓库是面向主题的、集成的、具有时间特征的、稳定的数据集合,用以支持经营管理中的决策制定过程。数据仓库提供用户用于决策支持的当前和历史数据,这些数据在传统的操作型数据库中很难或不能得到。
面向主题是指数据仓库中的数据是按照一定的主题域进行组织。主题是一个抽象的概念,是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息系统相关。集成的是指数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
数据仓库的体系结构分数据源、数据转换、数据仓库、数据集市和用户几部分。数据源,包括企业内部的业务数据、遗留数据、其它业务系统数据及相关WEB
数据等;数据转换是数据仓库构建的重要环节,主要是对各种复杂的数据源进行抽取、转换、装载及其他处理,同时要实现数据质量跟踪监控以及元数据抽取与创建等工作;数据仓库主要实现对各种数据的组织、存储及管理等;数据集市是为不同业务而单独设计的数据仓库系统,即开发者为企业内部的不同用户群定制特殊的数据仓库子系统。用户部分,即具体面向使用者的应用部分,主要是指数据仓库存取与检索为用户提供了访问数据仓库或数据集市的功能,其中分析与报告为用户使用数据仓库提供了一组工具,用于帮助用户对数据仓库或数据集市进行联机分析或数据挖掘等。
2、数据仓库构建方法
2.1 普通数据仓库构建方法。对于普通数据仓库的构建,企业在对整个系统的建设综合各种因素的基础上,将整个项目的实施分阶段、分步骤实施,可以在每一阶段建设的基础上分阶段纳入不同的业务系统,逐步建立起一个综合的、专题较为完善的、适合部门、子单位使用的完整的数据仓库系统,从而才能使投资尽快获得收益。
在数据仓库的构建过程中,利用模糊数学可实现数据仓库内数据的语义表示,丰富数据加工的手段,提高分析处理的能力。数据仓库的构建,一般采取先构建数据集市,最后将各个数据集市整合在一起形成数据仓库的渐进模式;通过概念层、逻辑层、物理层建模,确定相关主题域的数据集市并对其进行联机分析处理。构建数据仓库模型一般采用以下几种:
2.1.1 星型模型:星型模型是最常用的数据仓库设计结构的实现模式。使数据仓库形成了一个集成系统,为用户提供分析服务对象。该模型的核心是事实表,围绕事实表的是维度表。通过事实表将各种不同的维度表连接起来,各个维度表都连接到中央事实表。[page]
2.1.2
星系模型(也称雪花模型):雪花模型对星型模型的维度表进一步标准化,对星型模型中的维度表进行了规范化处理。同时也是对星型模型的扩展,每一个维度都可以向外连接到多个详细类别表。在实际应用中,用户的需求多种多样,数据来源可能为多个事实表,故可采用多个事实表共存,之间通过公用的维表相关联的星系模型,也称为事实星座。
2.1.3 原子级数据模型和汇总级数据模型并存:坚持原子级数据模型和汇总级数据模型并存,而且要尽可能地细化原子级数据。
2.1.4 设立代理键:代理键是维表中一些没有业务含义的字段,只是一个由数据仓库加载程序时建立的数字。
2.2 空间数据仓库构建方法。随着GIS(地理信息系统)在各行业的广泛应用,最初面向事务处理为主的空间数据库信息系统已不能满足需要,信息系统开始从管理转向决策处理,空间数据仓库就是为满足这种新的需求而提出的空间信息集成系统。尤其是地理信息决策支持系统中,空间数据仓库系统显得尤为重要。
空间数据仓库具有普通数据仓库的普遍特征,但其本身有一些特殊性。并且空间数据仓也并不是空间数据库的简单集合。与空间数据库比,空间数据仓除支持数据库外,还支持数据文件、文本文件、应用程序等众多数据源;另外空间数据仓库中的数据有时间数据、空间数据、属性数据及异构数据等多种数据;其次空间数据仓库中还包括了数据处理规则、算法等;再次空间数据仓库的数据是对原始数据进行加工、处理、集成等转换,是对数据的增值和统一;空间数据库还引入了时间纵的概念,它是以时间为基准来管理数据,可以截取不同时间尺度上的信息,从瞬态到区段时间直到全体,空间数据仓库是依赖于时间维的数据结构,它可以根据不同的需要划分不同的时间粒度等级,以便进行各种复杂的趋势分析。当然,不言而喻,它还包含了空间维的方位数据。正因为空间数据仓库与普通数据仓库的不同,并且它以空间数据仓库完全不是相同的概念,一般空间数据仓库以如下体系结构分为四大功能模块,分别是源数据、数据变换工具、空间数据仓库、客户端分析工具。源数据它不仅指那些常见的空间数据库,还包括文件、网页、知识库、遗留系统等各种数据源。数据变换工具与具有普通数据仓库数据变换相同的提取转换功能,但它还包括了特有的空间变换等。空间数据仓库以立体、多维的方式来组织和显示数据。但最基本的空间维和时间维是其反映客观世界动态变化的基础,空间数据仓库技术最关键要点也就是时间维和空间维数据组织方式。目前空间数据仓库已成为国、内外GIS(地理信息系统)研究的热点并取得了较大进展。要把空间信息融合进企业现有的数据仓库中,在原有系统不作较大改动的前提下,一般采用三种模式构建企业空间数据仓库:(1)把空间信息作为多维模型中的空间维引入;(2)把空间信息作为研究主题引入;(3)在维和度量中都包含空间信息。因此,计算并存储所有空间度量是不现实的。一般使用空间索引树(如R-tree)在最细空间粒度上构建分组层次,作为空间维的分层,每个空间维需要建立一棵空间索引树。
3、结束语
总之,数据仓库构建是数据仓库技术的关键,数据仓库技术是一项基于数据管理和利用的综合性技术和解决方案,尤其是现在空间数据仓库在GIS 中的广泛应用,它成为数据库市场的新一轮增长点,同时也成为下一代信息系统的重要组成部分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30