大数据在金融领域的应用远不止如此,银行、保险、基金、证券等领域均有广泛的市场,一般有精准营销和大数据风控两个方面。业内人士建议,通过大数据挖掘金融价值,使数据资产成为金融机构的核心竞争力。
再复杂的其本质也简单,金融大数据的运用与发展就是其一。
近来网贷平台频暴雷,根本原因除了外部监管趋严、市场利空、经营不善以外,不外乎资金错配、假标盛行、借款人恶意欠债等,这些原因用简单的办法就可以得到解决:其中大多可以通过大数据征信来解决信息不对称。而大数据征信是利用数据分析和模型进行风险评估,依据评估分数,预测还款人的还款能力、还款意愿以及欺诈风险。在金融风控领域,大数据指的是全量数据和用户行为数据。大数据在金融领域的应用远不止如此,银行、保险、基金、证券等领域均有广泛的市场。
大数据在金融领域应用:精准营销和大数据风控
据苏宁金融研究院高级研究员薛洪言介绍,大数据在金融领域的应用,一般有精准营销和大数据风控两个方面。
薛洪言表示,精准营销是基于行为数据去预测用户的偏好和兴趣,继而推荐合适的金融产品。对于大数据风控,其逻辑便在于“未来是过去的重复”,即用已经发生的行为模式和逻辑来预测未来。这意味着,随着随机事件的大量发生,是可以发现其内在规律的。而大数据里包含的海量数据,为我们发觉隐藏在随机事件后面的规律提供了条件。而大数据风控的两个应用,信用风险和欺诈风险,背后都是这个逻辑,通过分析历史事件,找到内在规律,建成模型,然后用新的数据去验证和进化这个模型。
贵阳大数据交易所执行总裁王叁寿告诉中国经济时报记者,截至2017年底,中国网民规模达到7.72亿,手机网民规模达到7.53亿。随着我国加快IPv6、5G的商用部署,数据总量将呈现爆发式增长。从某种角度而言,数据详实记录了发展中的世界,而大数据使未来复现成为可能。大数据是无限循环、无限复制的绿色资源,应用次数越多,其价值越大,将会颠覆未来很多产业的竞争模式。对于当前而言,大数据是国家基础性战略资源、创新生产要素、是21世纪的“钻石矿”;对于未来而言,大数据是“活化石”。
大数据应用水平正成金融企业竞争力的核心要素
至于金融大数据的未来,有分析称,数据驱动金融将是一种趋势,谁掌握了大数据,金融营销、金融风控就会胜出。
中国支付清算协会业务协调部丁华明认为,一个关键的因素是大数据应用水平正在成为金融企业竞争力的核心要素。金融的核心是风控,风控以数据为导向。金融机构的风控水平直接影响坏账率、营收和利润。目前,金融机构正在加大在数据治理项目中的投入,结合大数据平台建设项目,构建企业内统一的数据池,实现数据的“穿透式”管理。在大数据时代,数据治理是金融机构需要深入思考的命题,有效的数据资产管控,可以使数据资产成为金融机构的核心竞争力。
普华永道的研究报告显示,83%的中国金融机构希望投资大数据。金融行业对大数据的需求属于业务驱动型。其迫切希望应用大数据技术使营销更精准、风险识别更准确、经营决策更具针对性、产品更具吸引力,从而降低企业成本,提高企业利润。随着更多金融机构基于大数据获得丰厚的回报,将进一步打消其顾虑,加速大数据的普及。
上述报告还称,各级政府正推动金融行业数据整合、共享和开放。国务院《促进大数据发展行动纲要》提出,到2018年,中央政府层面实现金税、金关、金财、金审、金盾、金宏、金保、金土、金农、金水、金质等信息系统通过统一平台进行数据共享和交换。国家还通过推动建设各类大数据服务交易平台,为数据使用者提供更丰富的数据来源。数据越关联越有价值、越开放越有价值。大数据的发展需要所有组织和个人的共同协作,将个人私有、企业自有、政府自有的数据进行整合,把私有大数据变为公共大数据。金融数据安全问题也越来越受到重视。大数据的应用为数据安全带来新的风险。数据具有高价值、无限复制、可流动等特性,这些特性为数据安全管理带来了新的挑战。
对金融机构来说,网络恶意攻击成倍增长,组织数据被窃的事件层出不穷。这对金融机构的数据安全管理能力提出了更高的要求。大数据使得金融机构内海量的高价值数据得到集中,并使数据实现高速存取。但是,如果出现信息泄露,可能一次性泄露组织内近乎全部的数据资产。数据泄露后还可能急速扩散,甚至出现更加严重的数据篡改和智能欺诈的情况。
2018年是金融行业监管大年,“防风险”依然是行业发展主旋律。“近年来大数据风控越来越受重视,越被市场认可,我们越要做好风险防控工作,合规发展。”百融金服副总裁陈雷指出,不仅金融业务要合规经营,大数据风控行业也要合规发展。
以当下正经历暴雷潮的网贷行业为例,陈雷认为,以P2P为代表的互联网金融原来只要“有胆量”就能发展起来的时代已经过去了,现在是需要拥抱科技的时代,要通过大数据挖掘金融价值。
数据分析咨询请扫描二维码
# 数据分析师就业和发展前景 **市场需求与前景** - 全球数据分析市场预计每年将以超过10%的速度增长,为数据分析师提供巨大的 ...
2024-11-25统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22