热线电话:13121318867

登录
首页精彩阅读Python下线程之间的共享和释放示例
Python下线程之间的共享和释放示例
2018-08-05
收藏

Python下线程之间的共享和释放示例

最近被多线程给坑了下,没意识到类变量在多线程下是共享的,还有一个就是没意识到 内存释放问题,导致越累越大
1.python 类变量 在多线程情况 下的 是共享的
2.python 类变量 在多线程情况 下的 释放是不完全的
3.python 类变量 在多线程情况 下没释放的那部分 内存 是可以重复利用的
    
import threading
 import time
   
 class Test:
   
   cache = {}
     
   @classmethod
   def get_value(self, key):
     value = Test.cache.get(key, [])
     return len(value)
   
   @classmethod
   def store_value(self, key, value):
     if not Test.cache.has_key(key):
       Test.cache[key] = range(value)
     else:
       Test.cache[key].extend(range(value))
     return len(Test.cache[key])
   
   @classmethod
   def release_value(self, key):
     if Test.cache.has_key(key):
       Test.cache.pop(key)
     return True
   
   @classmethod
   def print_cache(self):
     print 'print_cache:'
     for key in Test.cache:
       print 'key: %d, value:%d' % (key, len(Test.cache[key]))
   
 def worker(number, value):
   key = number % 5
   print 'threading: %d, store_value: %d' % (number, Test.store_value(key, value))
   time.sleep(10)
   print 'threading: %d, release_value: %s' % (number, Test.release_value(key))
   
 if __name__ == '__main__':
   thread_num = 10
     
   thread_pool = []
   for i in range(thread_num):
     th = threading.Thread(target=worker,args=[i, 1000000])
     thread_pool.append(th)
     thread_pool[i].start()
   
   for thread in thread_pool:
     threading.Thread.join(thread)
     
   Test.print_cache()
   time.sleep(10)
     
   thread_pool = []
   for i in range(thread_num):
     th = threading.Thread(target=worker,args=[i, 100000])
     thread_pool.append(th)
     thread_pool[i].start()
   
   for thread in thread_pool:
     threading.Thread.join(thread)
     
   Test.print_cache()
   time.sleep(10)
总结
公用的数据,除非是只读的,不然不要当类成员变量,一是会共享,二是不好释放。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询