大数据时代 这些问题待解决
在网络时代的今天,数据信息是否安全时刻触动着每个人的心弦。有关专家告诉《中国科学报》记者,尽管大数据已使用多年,但在技术监管领域,各环节仍存在诸多技术难点。
数据来源是否可靠待鉴定
据了解,此次大数据安全整治检查中一项重点工作是对合法采集内容与非法采集内容进行分类。其中,对于非法采集信息,将进行集中打击、销毁;对合法、合规采集的信息,则纳入保护监管范围。
浙江大学网络空间安全研究中心主任任奎表示,从网络安全的角度来看,首先,大数据在采集的过程中一方面需要考虑对数据源进行认证,确保数据本身的可靠性,如何在不增加负荷的情况下,特别是针对物联网中计算处理能力相对较弱的设备,实现有效的认证还有待研究。另一方面需要重视隐私保护,如何有效地对数据进行脱敏仍然存在挑战,当前比较热门的方法诸如差分隐私技术仍在积极发展中。
“公民的信息是公民的私有财产,如果不对数据进行溯源来证明数据来源渠道,那么很可能助长非法数据来源的气焰。”上海交通大学计算机科学与工程系教授朱浩瑾说。
中国科学院信息工程研究所DCS中心副研究员王跃武告诉记者,对于大数据而言,关键还是尽量将技术做到更完善,来保证数据分析结果的真实性、可靠性。
提及目前大数据存储环节存在的问题,任奎告诉记者,目前的主要问题是如何在有效保护数据的前提下,完整支持传统的功能,诸如常见的搜索、排序、聚合分析等,当前相关安全技术与明文应用相比,尚存在功能和性能上的差距,有待提高。
“此外,还应该考虑如何进行安全去重等实际需求,从而减轻数据存储的压力,但这与‘备份’这种主动的防灾机制是不同的,相关安全技术在安全与性能的平衡方面仍然需要进一步研究。”任奎补充道。
采访中,针对大数据的存储技术,王跃武与任奎一致认为,从软件层面比较主流的是基于分布式系统的非关系型数据库。
据了解,非关系型数据库的优点主要在于易扩展、高性能等,但是也存在诸如标准化不足、功能支持不够丰富等缺点。常见的分类有键值存储、列存储、文档存储以及图存储。但是,如何权衡实际应用中的需求,比如系统的一致性、可用性以及分区容错性等,并提供定制化的技术,仍有大量工作要做。
如何避免“中间人”的攻击?
任奎表示,数据在网络中进行传输,也需要防止监听、篡改这类传统的“中间人”攻击等,因此端到端加密是很有必要的。但是,端到端加密技术仍然面临很多新型侧信道攻击来窥探隐私的挑战,尤其是最近一些以人工智能方法来展开的侧信道分析工作也说明了这一领域仍然有很多问题需要解决。“除此以外,端对端加密虽然好用,但同时也给网络入侵检测、加密数据防火墙的设计带来更多的挑战,如何安全、高效地支持这类应用还需要进一步研究。”任奎说。
360安全专家刘洋曾在接受记者采访时表示,传统的网络安全思路已经无法保障大数据时代的安全。传统网络安全的防护思路是划分边界,将内网、外网分开,业务网和公众网分离,用终端设备将潜在风险隔离。通过在每个边界设立网关设备和网络流量设备来守住“边界”,以期解决安全问题。但随着移动互联网、云服务的出现,移动终端在4G信号、Wi-Fi信号、电缆之间穿梭,网络边界实际上已经消亡。
大数据销毁并非简单的“删除”“清空”
在朱浩瑾看来,在我国,数据销毁仍是一个不小的问题。他指出,欧盟出台的《通用数据保护条例》中明文规定了用户的“被遗忘权”,即用户个人可以要求责任方删除关于自己的数据记录,而国内的法律无此规定。此外,企业究竟有无对数据进行销毁,在技术上并不好验证。“比如你的手机移动端可以进行一些设置,但是服务器端你怎么知道有没有销毁?”朱浩瑾补充道。
任奎指出,大数据的销毁是实现数据有效管理的必要过程,其过程并非简单的“删除”“清空”,如何保证指定的内容确实被“清除”与“销毁”,除了技术层面的发展,仍需要建立行之有效的规范,例如美国国防部的DoD 5220.22-M规范。
对此,王跃武表达了不同意见。他表示,大数据时代,数据来源是一个由线到面的过程,销毁从本质上来讲是一种消极的做法。“大数据如同金矿,我们尽力从中淘出金子,然后将其保护好,这才是我们该做的。”王跃武说。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20