大数据科技如何影响现代体育
大数据被越来越多的领域熟知与运用。在体育领域,大数据也渐渐的被大家重视起来。从教练,球员,再到工作人员,运用这些数据可以更好的帮助球员得分,合同谈判,或是避免伤病。
在2014年麻省理工斯隆体育分析大会(MIT Sloan Sports Analytics Conference)上,教练们与球员们在一起,分析了大数据的潜力,与它对于现代体育的8个影响。
在棒球比赛中,有的时候,好球与坏球真的只是差之毫厘,如果完全靠裁判的眼力与经验,出现误判在所难免。Sportvision公司特此为棒球大联盟30支球队都装上了帮助判断好球与坏球的设备。他们这项技术还应用在了橄榄球,赛车等运动中。“当然,没有任何东西会取代裁判的判罚。我们只是通过数据的收集与分析,技术的现场运用,帮他们做出准确率更高的判罚。”Sportvision公司的CEO,汉克·亚当斯在谈论这项技术时说到。其实这一技术跟足球中的门线技术如出一辙。
对于像我这种深度重病的球迷,喜欢去看球队或是球员的各种数据。丹·布鲁克斯说,“我们将数据按照大多数人可以理解的标准进行分析整理。我们可以看到不同投手(这里同时指棒球的投手)在不同情况下,不同比赛中,对于比赛有着不同的影响。我们可以找出裁判在面对不同身高的击球手时,对于好球与坏球判罚的数据图。”丹·布鲁克斯是BrooksBaseball.net的创始人,在这个网站上,你可以看到很多高阶数据。
很多高科技公司都试图或者已经进入这个领域。阿迪达斯有一个名为miCoach的系统,在球员的球衣上附加一个设备。通过收集来的数据,教练可以更加准确的了解到,谁更需要休息。而且该设备能如实的反映球员在场上的状态数据,如心跳,速度,加速度等。
这种不是通过训练或是实验收集来的数据,可以帮助训练师和医务人员更好的了解运动员的身体情况,并及时的做出应对措施。印第安纳波利斯小马的四分卫Matt·Hasselbeck说他最喜欢那种可以减少运动员受伤概率的设备,“通过检测水合作用(Hydration)和收集头部撞击的数据,可以分析出更合理,对于运动员更加安全的战术。”
目前来讲,大多数比赛的数据还是人工收集。我们都知道,很多比赛节奏较快,有些数据稍纵即逝。一个名为Zebra Technologies的公司试图记录更为全面,更为准备的现场数据。RFID,是他们MotionWorks Sports Solution的一部分。通过将RFID标签放在设备里,球上,或是运动员的身上,来跟踪收集其运动方向,距离,速度等数据。这个标签每秒闪烁25次,以120毫秒的速度传送数据。另一家名为SportVU,在每一个NBA球馆安放了6个摄像头,以每秒25次的速度来收集每一名球员和篮球的每一次移动。
通过历史数据的分析,从而球队可以更好的“抓住”球迷。“这是一个关于了解每一个球迷喜好的数据收集,有的人更喜欢某个客队来的时候来看球,有的人喜欢下午4点的比赛。这是一个关于了解是什么影响球迷们做出决定,比通常人们所知道的因素更加具体,更加细化的数据。”John·Forese说道,他是一个数据收集与分析公司,LiveAnalytics的副总裁兼总经理。
很多职业球队,诸如新英格兰爱国者,就通过特定的手机软件上的一些功能,比如在座位上通过软件买食物,或是查看厕所排队时间,来分析球迷的想法。
前多伦多猛龙总经理布莱恩·克朗格洛,球队应该专门聘请数据专家,用最先进的机器与软件进行数据分析。“现在数据分析方面的工作越来越多。如果你花上25万美金雇佣2个或3个全职数据分析师帮你做这些工作,你就可以轻松在这一方面领先于其他球队。”
旧金山49人主席Paraag Marathe提到,因为教练跟球员很多时候需要在一瞬间做出判断,所以收集来的那些数据要经过更加专业,细致的处理,这样才更容易被他们记住并运用。如果这些数据不能被教练或是球员们很好的运用,那我们收集来它们做什么?”
数据分析人员可以将重要数据给教练,从而帮助他们做出更好的决定。布莱恩·伯克是Advanced NFL Stats网站的创始人,他说,“高阶数据可以帮助教练或是球员做出更明智的决策,从而左右比赛的走向。”
49人的主席Marath说到,好的数据运用,可以帮助一名“不出众”的球员签下大合同,也可以让一名“出色”的教练被解雇。现在人们尝试用数据去支撑合同里所提出的要求。他们可以将数据进行各种整合,分析,从而达到自己的目的。NBA总裁亚当·席尔瓦说,分析师在结束2012年NBA停摆中起了巨大的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31