大数据科技如何影响现代体育
大数据被越来越多的领域熟知与运用。在体育领域,大数据也渐渐的被大家重视起来。从教练,球员,再到工作人员,运用这些数据可以更好的帮助球员得分,合同谈判,或是避免伤病。
在2014年麻省理工斯隆体育分析大会(MIT Sloan Sports Analytics Conference)上,教练们与球员们在一起,分析了大数据的潜力,与它对于现代体育的8个影响。
在棒球比赛中,有的时候,好球与坏球真的只是差之毫厘,如果完全靠裁判的眼力与经验,出现误判在所难免。Sportvision公司特此为棒球大联盟30支球队都装上了帮助判断好球与坏球的设备。他们这项技术还应用在了橄榄球,赛车等运动中。“当然,没有任何东西会取代裁判的判罚。我们只是通过数据的收集与分析,技术的现场运用,帮他们做出准确率更高的判罚。”Sportvision公司的CEO,汉克·亚当斯在谈论这项技术时说到。其实这一技术跟足球中的门线技术如出一辙。
对于像我这种深度重病的球迷,喜欢去看球队或是球员的各种数据。丹·布鲁克斯说,“我们将数据按照大多数人可以理解的标准进行分析整理。我们可以看到不同投手(这里同时指棒球的投手)在不同情况下,不同比赛中,对于比赛有着不同的影响。我们可以找出裁判在面对不同身高的击球手时,对于好球与坏球判罚的数据图。”丹·布鲁克斯是BrooksBaseball.net的创始人,在这个网站上,你可以看到很多高阶数据。
很多高科技公司都试图或者已经进入这个领域。阿迪达斯有一个名为miCoach的系统,在球员的球衣上附加一个设备。通过收集来的数据,教练可以更加准确的了解到,谁更需要休息。而且该设备能如实的反映球员在场上的状态数据,如心跳,速度,加速度等。
这种不是通过训练或是实验收集来的数据,可以帮助训练师和医务人员更好的了解运动员的身体情况,并及时的做出应对措施。印第安纳波利斯小马的四分卫Matt·Hasselbeck说他最喜欢那种可以减少运动员受伤概率的设备,“通过检测水合作用(Hydration)和收集头部撞击的数据,可以分析出更合理,对于运动员更加安全的战术。”
目前来讲,大多数比赛的数据还是人工收集。我们都知道,很多比赛节奏较快,有些数据稍纵即逝。一个名为Zebra Technologies的公司试图记录更为全面,更为准备的现场数据。RFID,是他们MotionWorks Sports Solution的一部分。通过将RFID标签放在设备里,球上,或是运动员的身上,来跟踪收集其运动方向,距离,速度等数据。这个标签每秒闪烁25次,以120毫秒的速度传送数据。另一家名为SportVU,在每一个NBA球馆安放了6个摄像头,以每秒25次的速度来收集每一名球员和篮球的每一次移动。
通过历史数据的分析,从而球队可以更好的“抓住”球迷。“这是一个关于了解每一个球迷喜好的数据收集,有的人更喜欢某个客队来的时候来看球,有的人喜欢下午4点的比赛。这是一个关于了解是什么影响球迷们做出决定,比通常人们所知道的因素更加具体,更加细化的数据。”John·Forese说道,他是一个数据收集与分析公司,LiveAnalytics的副总裁兼总经理。
很多职业球队,诸如新英格兰爱国者,就通过特定的手机软件上的一些功能,比如在座位上通过软件买食物,或是查看厕所排队时间,来分析球迷的想法。
前多伦多猛龙总经理布莱恩·克朗格洛,球队应该专门聘请数据专家,用最先进的机器与软件进行数据分析。“现在数据分析方面的工作越来越多。如果你花上25万美金雇佣2个或3个全职数据分析师帮你做这些工作,你就可以轻松在这一方面领先于其他球队。”
旧金山49人主席Paraag Marathe提到,因为教练跟球员很多时候需要在一瞬间做出判断,所以收集来的那些数据要经过更加专业,细致的处理,这样才更容易被他们记住并运用。如果这些数据不能被教练或是球员们很好的运用,那我们收集来它们做什么?”
数据分析人员可以将重要数据给教练,从而帮助他们做出更好的决定。布莱恩·伯克是Advanced NFL Stats网站的创始人,他说,“高阶数据可以帮助教练或是球员做出更明智的决策,从而左右比赛的走向。”
49人的主席Marath说到,好的数据运用,可以帮助一名“不出众”的球员签下大合同,也可以让一名“出色”的教练被解雇。现在人们尝试用数据去支撑合同里所提出的要求。他们可以将数据进行各种整合,分析,从而达到自己的目的。NBA总裁亚当·席尔瓦说,分析师在结束2012年NBA停摆中起了巨大的作用。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21