有没有人从数据的角度研究过艺术市场
比如从数据角度分析艺术品的合理定价,或者从交易数据来分析单个艺术品的价格走势,以及以数据来分析某个艺术家?
有的。我就一直在做相关领域的研究工作,我创立了一个叫做守望者的工作室,专门从事艺术市场的数据挖掘、分析工作,并提供相关领域的定制研究和咨询服务。
基于数据的艺术市场研究
我们的研究方法是:首先,收集艺术市场的原始数据,比如艺术家档案、展览新闻、拍卖结果等,然后在这些原数据的基础上,把它们合并到一个统一的数据库中,进行细致的数据清洗工作。通常这个步骤叫做数据沉淀。
接下来就是初步的分析。有了成交价格、作品尺寸、作者、创作年代这些基础信息后,第一块可以分析的就是价格数据。艺术品属于非同质品,因此你会马上发现国内以前通行的“平尺价格”这种方法是非常粗糙的。
为了解决这个问题,我们大约花费了3个月的研发时间,初步建立了一种回归分析法,也就是将面积、材质、主题、代表性等因素考虑进去,赋予一定的权重,计算出一个艺术家的“平均艺术品模型”(算法本身只横向对比艺术家本人的数据,因此这种回归分析不会导致艺术家彼此之间因为非同质化而产生的干扰),然后求出单个艺术品的成交均价。将每年的价格数据汇总后,形成类似这样的图表:
上图就是一个艺术家作品的价格趋势与市场整体走势对比分析图,由于目前2015年还未结束,所以图表中排除了2015年的数据避免干扰。
在这个领域,我们也抱着学习的态度。国内的雅昌艺术网有一个拍卖数据库,做的工作是类似的,在数据沉淀方面它们的工作做得非常全面。但由于雅昌主要是一个网络媒体,它们的工作重点聚焦于价格指数、天价艺术品排名、平均价格等具有眼球效应的指标分析上,我们则是对每个艺术家的价格以及导致价格的成因进行非常详细的深度分析。
国外也有著名的ArtPrice、ArtNet等网络平台,专门研究艺术品的价格进行定量分析,非常专业,它们只凭借价格数据这一点,就形成了会员制服务或定制报告服务来盈利。
更深入的分析
当然,作为专项做艺术市场研究的团队,我们不会止步于价格趋势的研究,因为这块所反映的只是交易的结果,而不是原因。在一些行业前辈的指导下,我们建立了重要的分析方法界面。比如,我们与有着多年市场交易经验的业内操盘者进行交流,建立了艺术市场的“多市场分析(Many Markets)”数据沉淀方法,在传统的一级市场数据(艺术展览、活动和出版物数据)与二级市场数据(主要是拍卖数据)基础上,我们进一步挖掘了所谓零级市场数据和三级市场数据。
其中,“零级市场”主要是指对艺术家档案数据的研究,从艺术家的成长经历中,剥离出最有价值的数据点,形成知识库。而第三级市场我们主要指的是博物馆、政府机构和非盈利组织的收藏和展览数据。
发现价值被低估的艺术家
之所以建立这样的分析模型,是因为艺术品创作通来自来艺术家本人的常年刻苦钻研,而艺术品最终会流向博物馆和非盈利性收藏。所以,我们将传统的一些定性分析法转化成定量分析工具,将具有类似属性的艺术家排列在一个界面上进行分析,就可以制作出具有“价值投资”思想的量表分析界面,找到那些具有“隐形价值”的艺术家,也就是其价值还没有充分体现在价格上面的、被市场低估的艺术家。
根据研究,我们发现艺术家的市场价值基本符合正态分布模型,类似上图,具有长期、持续的良好市场价值的艺术家品牌大约需要达到2sigma+水平,大约占艺术家整体数量的2.3%,其中具有天价效应的艺术家大约占总体的千分之一,因此,如果投资艺术品,采用随机投资的方法,从长期来看是具有较高风险的,这也是我们研究的一个具体价值体现点 —— 找到价值被低估的艺术家。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13