数据产品经理的必修课:数据图表应用
图表是件花衣裳,你得懂得怎么穿!
初阶的饼图、环形图、折线图、柱形图、条形图等就不多说了,因为他们直观到无需解释。但需要提一下做这些图的时候的细节:
(可跳过不看)
首先,告别excel默认的样式和配色,因为那样会使你的报告逼格很低。
在我平时工作中,许多伙伴会问“你这图表用什么软件做的?感觉好高级?”,我说“excel啊”,他们吃惊不已。如何达到这些效果?
先仔细摸索图表布局选项卡下的坐标轴、网格线、趋势线、图例,标签等功能细节;其次是熟悉绘图区格式里面的细节,如调整图表区域的配色,合理使用阴影等;最后是选择合适的图表来反映问题,这一点其实相当复杂,在后续的文章中会循序渐进地提及(结合一些场景),一股脑地说,我写得辛苦你读的累,划不来。
推荐一本刘万祥的《Excel图表之道》,它会让你惊叹于excel作图功能是如此的强大。
进入主题:强大的散点图
首先,散点图确实能很直观的反应两个变量之间的关系。
案例一:利用散点图观察不同来源流量与网站总流量的关系。
上图展示了某公司主站的新访客各来源渠道与总新访客量。
结论很直观:
direct(直接访问来源)、organic(自然搜索来源)和总的新访客有明显的正相关关系(direct与newuv相关系数达到0.89,direct来源的占比达到60%)。因此,我们知道这个公司大部分访客来源于口碑,而且其潜力还相当大,因为direct和organic图显示新访客对direct的弹性比较高,没有出现像sem(蓝色)图那样的边际效益递减的情况。
(一些名词解释我会在文章最后列出)
通过组合型散点图,我们已经得到了一些有价值的信息。我个人对sem来源的变化趋势非常感兴趣。针对这点我们继续挖掘信息。
案例二:在散点图上用颜色增加一个分析维度,并添加平滑趋势线。
图中,我将sem来源的访问量按四分位数进行了分层,配合局部加权多项式拟合线。
似乎又有了新的收获:
1.sem来源流量较少时(红色和绿色,后50%),与总流量的正相关关系是比较明显的。
2.sem来源流量在75%到50%分位数(绿色)之间非常集中。我猜测,使sem流量维持在这个水平的投放策略,看来是有一种粘性的,即便加大投放,在一定幅度内,sem的流量增长也不明显,直到突破某个临界值,进入蓝色和紫色区域后,才会松开。
3.较高sem流量(蓝色和紫色,前50%),与总流量的关系非常弱,拟合线几乎平了。
到这里,您可能会这么问:sem流量在什么程度才是最优?
要衡量这个问题,我选取了sem投放总成本,sem单位点击成本(cpc),和sem来源的注册转化率三个指标。让可爱的散点图升级!
气泡图,就是除了横纵坐标轴,点的大小还能衡量一个变量的散点图。上图不仅衡量了sem投放总成本(semCOST)和sem来源流量(semUV),还用点的大小衡量注册转化率(regRate)。结论比较直观,注册转化率高的点,在右上方,且预测线显示,投放力度越大,流量越大,且注册转化率至少不变。
得到这个结论有点振奋了,有没有?
还能不能再增加点信息?可以,我们将单位点击成本进一步放到散点图中。
案例四:气泡的颜色再衡量一个变量,升级为彩色气泡图
如图,点的大小是注册转化率,点的颜色是单位点击成本,从暖色调到冷色调,由低到高。转化率高且cpc低的点,在右上角。
我们可以说,sem投放成本越高,sem流量越多,且转化率越高,更可喜的是cpc还更低。对于一个sem投放部门来说,没有比这更完美的结论了。
但是,散点图只是反映了相关关系,并不是因果关系。我们不能说,增加sem投放是注册转化率升高且cpc降低的原因。但是,有这么显著的相关关系,我们就有足够的理由去增加投放,然后再去观察数据。
数据分析再精确,如果缩手缩脚,是依然办不成事情的。
当然,投放策略分析是可以做得非常复杂的,我们这里只是为了介绍散点图而引入了这个场景,初步地做个分析。但在中小企业,我觉得做到这一步就可以了。
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16