多变量分析:分类决策树CHAID&CRT
今天我们来说说分类决策树的应用和操作!主要包括CHAID&CRT,是非常好用和有价值的多变量分析技术,
CHAID——Chi-squared Automatic Interaction Detector卡方自交互侦测决策树
CRT——Classification Regression Tree分类回归树;
CHAID和CART是最有名的分类树方法,主要用于预测和分类。在市场研究中经常用于市场细分和客户促销研究,属于监督类分析技术。其中,树根节点是独立变量-因变量,例如:使用水平、购买倾向、用户或非用户、客户类型、套餐类别、细分类别等。子节点基于独立变量和其他分类变量(父节点),按照卡方显著性不断划分或组合为树状结构。预测变量一般也是非数量型的分类变量。
CHAID最常用,但独立变量只能是分类变量,也就是离散性的,CRT可以处理数量型变量,有时候二者结合使用。CHAID和CRT都可以处理非数量型和定序性变量。
分类树方法产生真实的细分类别,这种类是基于一个独立变量得到的一种规则和细分市场。也就是说,每一个树叶都是一个细分市场。
下面我们通过一个案例来操作SPSS软件的分类决策树模块
假设我们有一个移动业务数据,包含有客户的性别、年龄、语音费用、数据费用、客户等级、支付方式和促销套餐变量。我们现在期望能够得到针对不同的促销套餐来分析“客户画像”,这样有利于针对性的促销!也就是不同套餐客户特征描述!
因变量是促销套餐,其它是预测变量或自变量!
我们看到,首先要求我们定义变量的测量等级并定义好变量变标和值标!因为,CHAID和CRT具有智能特性,也就是自交互检验和自回归能力,所以对变量测量尺度要求严格!
为什么说变量测量等级重要呢?例如,我们有个变量叫学历(1-初中、2-高中、3-大专、4-本科、5-硕士以上),如果我们设定为定序变量,则决策树可以自动组合分类,但无论如何都是顺序组合,也就是说可能(1-初中、2-高中、3-大专)为一类,(4-本科、5-硕士以上)为一类,但绝对不会把1和5合并一类;如果我们定义为名义变量,则可以任意学历组合为某类了!
基本原理:基于目标变量(独立变量)自我分层的树状结构,根结点是因变量,预测变量根据卡方显著性程度不断自动生成父节点和子节点,卡方显著性越高,越先成为预测根结点的变量,程序自动归并预测变量的不同类,使之成为卡方显著性。程序根据预先设定的树状水平数停止。最后每一个叶结点就是一个细分市场。当预测变量较多且都是分类变量时,CHAID分类最适宜。
预测变量大部分都是人口统计资料,使研究者很快就可以找出不同细分市场特征。传统的交互分析对多维交叉表和归并类是一项繁重的工作。
首先,我们确定因变量后,放入其它自变量。接下来,我们要选择CHAID的验证和条件参数!一般来讲:我们主要设定父节点和子节点的数量,以及规定树状结构的水平数,如何生长!分类树将根据设定参数决定树的增长和停止!通常,我们考察总的样本量大小,父节点是子节点的两倍,当然如果设定的太小,树会非常茂盛,得到很多非常小的细分市场,可能没有实际营销意义!树的水平数也是同样道理!
其它还有很多参数可以设定,比如分割样本,错误分类成本,利润等,分类决策树可以直接输出结果和SPSS语法或SQL语法规则!(略)
因为树比较大,看不清楚,我们需要在树查看器中分析!
从查看器中我们可以看到,客户等级最显著,也最重要,首先跑上来!针对低端客户,账单支付方式重要,对于预付话费的人来讲,数据业务小于50.73的主要是Y类套餐!这样我们就可以看到这个类别的特征了!
最后的分类预测正确分类84.4%。
下面是生成的SQL语法规则:
UPDATE <TABLE>
SET nod_001 = 4, pre_001 = 5, prb_001 = 0.974026
WHERE ((客户等级 IS NULL) OR 客户等级 <> 2 AND 客户等级 <> 3) AND ((数据业务 IS NULL) OR (数据业务 <= 38.754));
我们可以把语法规则嵌入在分析系统中就可以实现商业智能和营销了!
当然,CRT基本方法和解读方式都是一样的!
总结:CHAID和CRT基本操作过程
指定CHAID或CRT分类树
规定目标变量和预测变量
设定预测变量的测量等级,非数量型变量也可预先合并分类。
规定树状结构的水平数。
指定节点包含的最小样本数量。
自动生成分类树。
考察分类树的结构。
分析Gain Table.
分析错误分类风险比。
重新设定分类树参数。
生成SQL语言,SPSS规则语法将样本归类。
分类决策树因为具有自动侦测的智能特点,所以在数据分析时,特别是多变量分析中就不再喜欢用传统的交互分析了,因为用CHAID和CRT方便多了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06