多变量分析:分类决策树CHAID&CRT
今天我们来说说分类决策树的应用和操作!主要包括CHAID&CRT,是非常好用和有价值的多变量分析技术,
CHAID——Chi-squared Automatic Interaction Detector卡方自交互侦测决策树
CRT——Classification Regression Tree分类回归树;
CHAID和CART是最有名的分类树方法,主要用于预测和分类。在市场研究中经常用于市场细分和客户促销研究,属于监督类分析技术。其中,树根节点是独立变量-因变量,例如:使用水平、购买倾向、用户或非用户、客户类型、套餐类别、细分类别等。子节点基于独立变量和其他分类变量(父节点),按照卡方显著性不断划分或组合为树状结构。预测变量一般也是非数量型的分类变量。
CHAID最常用,但独立变量只能是分类变量,也就是离散性的,CRT可以处理数量型变量,有时候二者结合使用。CHAID和CRT都可以处理非数量型和定序性变量。
分类树方法产生真实的细分类别,这种类是基于一个独立变量得到的一种规则和细分市场。也就是说,每一个树叶都是一个细分市场。
下面我们通过一个案例来操作SPSS软件的分类决策树模块
假设我们有一个移动业务数据,包含有客户的性别、年龄、语音费用、数据费用、客户等级、支付方式和促销套餐变量。我们现在期望能够得到针对不同的促销套餐来分析“客户画像”,这样有利于针对性的促销!也就是不同套餐客户特征描述!
因变量是促销套餐,其它是预测变量或自变量!
我们看到,首先要求我们定义变量的测量等级并定义好变量变标和值标!因为,CHAID和CRT具有智能特性,也就是自交互检验和自回归能力,所以对变量测量尺度要求严格!
为什么说变量测量等级重要呢?例如,我们有个变量叫学历(1-初中、2-高中、3-大专、4-本科、5-硕士以上),如果我们设定为定序变量,则决策树可以自动组合分类,但无论如何都是顺序组合,也就是说可能(1-初中、2-高中、3-大专)为一类,(4-本科、5-硕士以上)为一类,但绝对不会把1和5合并一类;如果我们定义为名义变量,则可以任意学历组合为某类了!
基本原理:基于目标变量(独立变量)自我分层的树状结构,根结点是因变量,预测变量根据卡方显著性程度不断自动生成父节点和子节点,卡方显著性越高,越先成为预测根结点的变量,程序自动归并预测变量的不同类,使之成为卡方显著性。程序根据预先设定的树状水平数停止。最后每一个叶结点就是一个细分市场。当预测变量较多且都是分类变量时,CHAID分类最适宜。
预测变量大部分都是人口统计资料,使研究者很快就可以找出不同细分市场特征。传统的交互分析对多维交叉表和归并类是一项繁重的工作。
首先,我们确定因变量后,放入其它自变量。接下来,我们要选择CHAID的验证和条件参数!一般来讲:我们主要设定父节点和子节点的数量,以及规定树状结构的水平数,如何生长!分类树将根据设定参数决定树的增长和停止!通常,我们考察总的样本量大小,父节点是子节点的两倍,当然如果设定的太小,树会非常茂盛,得到很多非常小的细分市场,可能没有实际营销意义!树的水平数也是同样道理!
其它还有很多参数可以设定,比如分割样本,错误分类成本,利润等,分类决策树可以直接输出结果和SPSS语法或SQL语法规则!(略)
因为树比较大,看不清楚,我们需要在树查看器中分析!
从查看器中我们可以看到,客户等级最显著,也最重要,首先跑上来!针对低端客户,账单支付方式重要,对于预付话费的人来讲,数据业务小于50.73的主要是Y类套餐!这样我们就可以看到这个类别的特征了!
最后的分类预测正确分类84.4%。
下面是生成的SQL语法规则:
UPDATE <TABLE>
SET nod_001 = 4, pre_001 = 5, prb_001 = 0.974026
WHERE ((客户等级 IS NULL) OR 客户等级 <> 2 AND 客户等级 <> 3) AND ((数据业务 IS NULL) OR (数据业务 <= 38.754));
我们可以把语法规则嵌入在分析系统中就可以实现商业智能和营销了!
当然,CRT基本方法和解读方式都是一样的!
总结:CHAID和CRT基本操作过程
指定CHAID或CRT分类树
规定目标变量和预测变量
设定预测变量的测量等级,非数量型变量也可预先合并分类。
规定树状结构的水平数。
指定节点包含的最小样本数量。
自动生成分类树。
考察分类树的结构。
分析Gain Table.
分析错误分类风险比。
重新设定分类树参数。
生成SQL语言,SPSS规则语法将样本归类。
分类决策树因为具有自动侦测的智能特点,所以在数据分析时,特别是多变量分析中就不再喜欢用传统的交互分析了,因为用CHAID和CRT方便多了!
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16