作者:丁点helper
来源:丁点帮你
前面两篇文章,我们聚焦于线性回归的回归系数,理清了样本与总体回归方程的区别、回归系数的最小二乘法估计等问题,今天我们重点来看看线性回归的残差和预测值。
回归分析的残差
前面我们谈到过样本回归方程有两种写法:
这里,残差的头上也有一个“^”(hat),意味着残差也有总体与样本之分。由上面残差的计算公式也可推知这一点,因为预测值有样本与总体之分,所以残差也自然也是有的。
我们做线性回归的时候一般需满足:
1)线性(L):因变量与自变量之间呈线性关系;
2)独立(I):各观测值相互独立;
3)正态(N):自变量(X)固定时所对应的因变量(Y)服从正态分布;
以上四个条件即俗称的LINE条件。这些条件虽然是针对因变量而言的,但我们却可以通过对残差进行分析达到检验的目的。一般而言,如果残差满足以上四个条件,则称线性回归的假设条件得到满足。
(有关回归诊断的问题,后面我们会专门详细介绍。)
回归分析的预测值
看完残差,我们再来看看预测值。这里要指出回归方程的第三种写法(一般对于总体回归):
看到 μ第一反应应该是均数,而且是总体均数(非样本均数),所以 μγ在相关教材上被称作“X取某个特定数值时,Y的条件总体均数”。
这里的“条件总体均数”估计会看晕不少人。所谓“条件”,意味着Y的取值是依据X的取值而定的,“X的取值”是确定Y的前提条件。
由此,严格来说, Ý应该是 μγ 的预测值。
这意味着给定X的取值,我们通过回归获得的是Y的一个平均值。比如前面文章中谈到的教育程度(X)和收入(Y)的回归方程:
当X=15时,可以计算得出 Ý=5000,严格来讲,这里算出的5000并非是某个人的具体收入,而是一群接受了15年教育的人,其收入的平均数。
因为即便是大家都接受了15年教育,但收入也并不完全相同,有的可能一两万,而有的也可能一两千。而我们通过回归获得是收入(Y)在教育程度为15年(X=15)的一个平均数。
理解了这一层,再看下面这图应该会比较轻松。
回归线与竖线的交点,即是回归预测值,也是这个正态曲线的均值。均值对应着正态分布的波峰,意味着即使这一群人的实际收入有差距,但大部分人仍然会围绕5000上下小幅波动(当X=15时)。
这里的正态分布之所以有四个,是因为在不同X的取值水平下,Y的取值会发生(系统性)的变化,即Y的均值会随着X的变化而变化。
这一点其实描述了回归最本质的意义,试想,如果Y的正态分布不随X变化,那意味就X不会对Y产生影响,则两者可能就不存在线性相关。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16