作者:丁点helper
来源:丁点帮你
前面两篇文章,我们聚焦于线性回归的回归系数,理清了样本与总体回归方程的区别、回归系数的最小二乘法估计等问题,今天我们重点来看看线性回归的残差和预测值。
回归分析的残差
前面我们谈到过样本回归方程有两种写法:
这里,残差的头上也有一个“^”(hat),意味着残差也有总体与样本之分。由上面残差的计算公式也可推知这一点,因为预测值有样本与总体之分,所以残差也自然也是有的。
我们做线性回归的时候一般需满足:
1)线性(L):因变量与自变量之间呈线性关系;
2)独立(I):各观测值相互独立;
3)正态(N):自变量(X)固定时所对应的因变量(Y)服从正态分布;
以上四个条件即俗称的LINE条件。这些条件虽然是针对因变量而言的,但我们却可以通过对残差进行分析达到检验的目的。一般而言,如果残差满足以上四个条件,则称线性回归的假设条件得到满足。
(有关回归诊断的问题,后面我们会专门详细介绍。)
回归分析的预测值
看完残差,我们再来看看预测值。这里要指出回归方程的第三种写法(一般对于总体回归):
看到 μ第一反应应该是均数,而且是总体均数(非样本均数),所以 μγ在相关教材上被称作“X取某个特定数值时,Y的条件总体均数”。
这里的“条件总体均数”估计会看晕不少人。所谓“条件”,意味着Y的取值是依据X的取值而定的,“X的取值”是确定Y的前提条件。
由此,严格来说, Ý应该是 μγ 的预测值。
这意味着给定X的取值,我们通过回归获得的是Y的一个平均值。比如前面文章中谈到的教育程度(X)和收入(Y)的回归方程:
当X=15时,可以计算得出 Ý=5000,严格来讲,这里算出的5000并非是某个人的具体收入,而是一群接受了15年教育的人,其收入的平均数。
因为即便是大家都接受了15年教育,但收入也并不完全相同,有的可能一两万,而有的也可能一两千。而我们通过回归获得是收入(Y)在教育程度为15年(X=15)的一个平均数。
理解了这一层,再看下面这图应该会比较轻松。
回归线与竖线的交点,即是回归预测值,也是这个正态曲线的均值。均值对应着正态分布的波峰,意味着即使这一群人的实际收入有差距,但大部分人仍然会围绕5000上下小幅波动(当X=15时)。
这里的正态分布之所以有四个,是因为在不同X的取值水平下,Y的取值会发生(系统性)的变化,即Y的均值会随着X的变化而变化。
这一点其实描述了回归最本质的意义,试想,如果Y的正态分布不随X变化,那意味就X不会对Y产生影响,则两者可能就不存在线性相关。
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10