原题 | Unravelling binary arithmetic operations in Python
作者 | Brett Cannon
译者 | 豌豆花下猫
来源 | Python猫
声明 | 本翻译是出于交流学习的目的,基于 CC BY-NC-SA 4.0 授权协议。为便于阅读,内容略有改动。
大家对我解读属性访问的博客文章反应热烈,这启发了我再写一篇关于 python 有多少语法实际上只是语法糖的文章。在本文中,我想谈谈二元算术运算。
具体来说,我想解读减法的工作原理:a - b。我故意选择了减法,因为它是不可交换的。这可以强调出操作顺序的重要性,与加法操作相比,你可能会在实现时误将 a 和 b 翻转,但还是得到相同的结果。
查看 C 代码
按照惯例,我们从查看 CPython 解释器编译的字节码开始。
>>> def sub(): a - b ... >>> import dis >>> dis.dis(sub) 1 0 LOAD_GLOBAL 0 (a) 2 LOAD_GLOBAL 1 (b) 4 BINARY_SUBTRACT 6 POP_TOP 8 LOAD_CONST 0 (None) 10 RETURN_VALUE
看起来我们需要深入研究 BINARY_SUBTRACT 操作码。翻查 Python/ceval.c 文件,可以看到实现该操作码的 C 代码如下:
case TARGET(BINARY_SUBTRACT): { PyObject *right = POP(); PyObject *left = TOP(); PyObject *diff = PyNumber_Subtract(left, right); Py_DECREF(right); Py_DECREF(left); SET_TOP(diff); if (diff == NULL) goto error; DISPATCH(); }
来源:https://github.com/python/cpython/blob/6f8c8320e9eac9bc7a7f653b43506e75916ce8e8/Python/ceval.c#L1569-L1579
这里的关键代码是PyNumber_Subtract(),实现了减法的实际语义。继续查看该函数的一些宏,可以找到binary_op1() 函数。它提供了一种管理二元操作的通用方法。
不过,我们不把它作为实现的参考,而是要用Python的数据模型,官方文档很好,清楚介绍了减法所使用的语义。
从数据模型中学习
通读数据模型的文档,你会发现在实现减法时,有两个方法起到了关键作用:__sub__ 和 __rsub__。
1、__sub__()方法
当执行a - b 时,会在 a 的类型中查找__sub__(),然后把 b 作为它的参数。这很像我写属性访问的文章 里的__getattribute__(),特殊/魔术方法是根据对象的类型来解析的,并不是出于性能目的而解析对象本身;在下面的示例代码中,我使用_mro_getattr() 表示此过程。
因此,如果已定义 __sub__(),则 type(a).__sub__(a,b) 会被用来作减法操作。(译注:魔术方法属于对象的类型,不属于对象)
这意味着在本质上,减法只是一个方法调用!你也可以将它理解成标准库中的 operator.sub() 函数。
我们将仿造该函数实现自己的模型,用 lhs 和 rhs 两个名称,分别表示 a-b 的左侧和右侧,以使示例代码更易于理解。
# 通过调用__sub__()实现减法 def sub(lhs: Any, rhs: Any, /) -> Any: """Implement the binary operation `a - b`.""" lhs_type = type(lhs) try: subtract = _mro_getattr(lhs_type, "__sub__") except AttributeError: msg = f"unsupported operand type(s) for -: {lhs_type!r} and {type(rhs)!r}" raise TypeError(msg) else: return subtract(lhs, rhs)
2、让右侧使用__rsub__()
但是,如果 a 没有实现__sub__() 怎么办?如果 a 和 b 是不同的类型,那么我们会尝试调用 b 的 __rsub__()(__rsub__ 里面的“r”表示“右”,代表在操作符的右侧)。
当操作的双方是不同类型时,这样可以确保它们都有机会尝试使表达式生效。当它们相同时,我们假设__sub__() 就能够处理好。但是,即使两边的实现相同,你仍然要调用__rsub__(),以防其中一个对象是其它的(子)类。
3、不关心类型
现在,表达式双方都可以参与运算!但是,如果由于某种原因,某个对象的类型不支持减法怎么办(例如不支持 4 - “stuff”)?在这种情况下,__sub__ 或__rsub__ 能做的就是返回 NotImplemented。
这是给 Python 返回的信号,它应该继续执行下一个操作,尝试使代码正常运行。对于我们的代码,这意味着需要先检查方法的返回值,然后才能假定它起作用。
# 减法的实现,其中表达式的左侧和右侧均可参与运算 _MISSING = object() def sub(lhs: Any, rhs: Any, /) -> Any: # lhs.__sub__ lhs_type = type(lhs) try: lhs_method = debuiltins._mro_getattr(lhs_type, "__sub__") except AttributeError: lhs_method = _MISSING # lhs.__rsub__ (for knowing if rhs.__rub__ should be called first) try: lhs_rmethod = debuiltins._mro_getattr(lhs_type, "__rsub__") except AttributeError: lhs_rmethod = _MISSING # rhs.__rsub__ rhs_type = type(rhs) try: rhs_method = debuiltins._mro_getattr(rhs_type, "__rsub__") except AttributeError: rhs_method = _MISSING call_lhs = lhs, lhs_method, rhs call_rhs = rhs, rhs_method, lhs if lhs_type is not rhs_type: calls = call_lhs, call_rhs else: calls = (call_lhs,) for first_obj, meth, second_obj in calls: if meth is _MISSING: continue value = meth(first_obj, second_obj) if value is not NotImplemented: return value else: raise TypeError( f"unsupported operand type(s) for -: {lhs_type!r} and {rhs_type!r}" )
4、子类优先于父类
如果你看一下__rsub__() 的文档,就会注意到一条注释。它说如果一个减法表达式的右侧是左侧的子类(真正的子类,同一类的不算),并且两个对象的__rsub__() 方法不同,则在调用__sub__() 之前会先调用__rsub__()。换句话说,如果 b 是 a 的子类,调用的顺序就会被颠倒。
这似乎是一个很奇怪的特例,但它背后是有原因的。当你创建一个子类时,这意味着你要在父类提供的操作上注入新的逻辑。这种逻辑不一定要加给父类,否则父类在对子类操作时,就很容易覆盖子类想要实现的操作。
具体来说,假设有一个名为 Spam 的类,当你执行 Spam() - Spam() 时,得到一个 LessSpam 的实例。接着你又创建了一个 Spam 的子类名为 Bacon,这样,当你用 Spam 去减 Bacon 时,你得到的是 VeggieSpam。
如果没有上述规则,Spam() - Bacon() 将得到 LessSpam,因为 Spam 不知道减掉 Bacon 应该得出 VeggieSpam。
但是,有了上述规则,就会得到预期的结果 VeggieSpam,因为 Bacon.__rsub__() 首先会在表达式中被调用(如果计算的是 Bacon() - Spam(),那么也会得到正确的结果,因为首先会调用 Bacon.__sub__(),因此,规则里才会说两个类的不同的方法需有区别,而不仅仅是一个由 issubclass() 判断出的子类。)
# Python中减法的完整实现 _MISSING = object() def sub(lhs: Any, rhs: Any, /) -> Any: # lhs.__sub__ lhs_type = type(lhs) try: lhs_method = debuiltins._mro_getattr(lhs_type, "__sub__") except AttributeError: lhs_method = _MISSING # lhs.__rsub__ (for knowing if rhs.__rub__ should be called first) try: lhs_rmethod = debuiltins._mro_getattr(lhs_type, "__rsub__") except AttributeError: lhs_rmethod = _MISSING # rhs.__rsub__ rhs_type = type(rhs) try: rhs_method = debuiltins._mro_getattr(rhs_type, "__rsub__") except AttributeError: rhs_method = _MISSING call_lhs = lhs, lhs_method, rhs call_rhs = rhs, rhs_method, lhs if ( rhs_type is not _MISSING # Do we care? and rhs_type is not lhs_type # Could RHS be a subclass? and issubclass(rhs_type, lhs_type) # RHS is a subclass! and lhs_rmethod is not rhs_method # Is __r*__ actually different? ): calls = call_rhs, call_lhs elif lhs_type is not rhs_type: calls = call_lhs, call_rhs else: calls = (call_lhs,) for first_obj, meth, second_obj in calls: if meth is _MISSING: continue value = meth(first_obj, second_obj) if value is not NotImplemented: return value else: raise TypeError( f"unsupported operand type(s) for -: {lhs_type!r} and {rhs_type!r}" )
推广到其它二元运算
解决掉了减法运算,那么其它二元运算又如何呢?好吧,事实证明它们的操作相同,只是碰巧使用了不同的特殊/魔术方法名称。
所以,如果我们可以推广这种方法,那么我们就可以实现 13 种操作的语义:+ 、-、*、@、/、//、%、**、<<、>>、&、^、和 |。
由于闭包和 Python 在对象自省上的灵活性,我们可以提炼出 operator 函数的创建。
# 一个创建闭包的函数,实现了二元运算的逻辑 _MISSING = object() def _create_binary_op(name: str, operator: str) -> Any: """Create a binary operation function. The `name` parameter specifies the name of the special method used for the binary operation (e.g. `sub` for `__sub__`). The `operator` name is the token representing the binary operation (e.g. `-` for subtraction). """ lhs_method_name = f"__{name}__" def binary_op(lhs: Any, rhs: Any, /) -> Any: """A closure implementing a binary operation in Python.""" rhs_method_name = f"__r{name}__" # lhs.__*__ lhs_type = type(lhs) try: lhs_method = debuiltins._mro_getattr(lhs_type, lhs_method_name) except AttributeError: lhs_method = _MISSING # lhs.__r*__ (for knowing if rhs.__r*__ should be called first) try: lhs_rmethod = debuiltins._mro_getattr(lhs_type, rhs_method_name) except AttributeError: lhs_rmethod = _MISSING # rhs.__r*__ rhs_type = type(rhs) try: rhs_method = debuiltins._mro_getattr(rhs_type, rhs_method_name) except AttributeError: rhs_method = _MISSING call_lhs = lhs, lhs_method, rhs call_rhs = rhs, rhs_method, lhs if ( rhs_type is not _MISSING # Do we care? and rhs_type is not lhs_type # Could RHS be a subclass? and issubclass(rhs_type, lhs_type) # RHS is a subclass! and lhs_rmethod is not rhs_method # Is __r*__ actually different? ): calls = call_rhs, call_lhs elif lhs_type is not rhs_type: calls = call_lhs, call_rhs else: calls = (call_lhs,) for first_obj, meth, second_obj in calls: if meth is _MISSING: continue value = meth(first_obj, second_obj) if value is not NotImplemented: return value else: exc = TypeError( f"unsupported operand type(s) for {operator}: {lhs_type!r} and {rhs_type!r}" ) exc._binary_op = operator raise exc
有了这段代码,你可以将减法运算定义为 _create_binary_op(“sub”, “-”),然后根据需要重复定义出其它运算。
更多信息
通过本博客的“语法糖”标签,你可以找到更多详解 Python 语法的文章。
更正
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20