CDA数据分析师 出品
作者:真达、Mika
数据:真达
【导读】
今天教大家如何用python写一个电信用户流失预测模型。之前我们用Python写了员工流失预测模型,这次我们试试Python预测电信用户的流失。
01、商业理解
流失客户是指那些曾经使用过产品或服务,由于对产品失去兴趣等种种原因,不再使用产品或服务的顾客。
电信服务公司、互联网服务提供商、保险公司等经常使用客户流失分析和客户流失率作为他们的关键业务指标之一,因为留住一个老客户的成本远远低于获得一个新客户。
预测分析使用客户流失预测模型,通过评估客户流失的风险倾向来预测客户流失。由于这些模型生成了一个流失概率排序名单,对于潜在的高概率流失客户,他们可以有效地实施客户保留营销计划。
下面我们就教你如何用Python写一个电信用户流失预测模型,以下是具体步骤和关键代码。
02、数据理解
此次分析数据来自于IBM Sample Data Sets,统计自某电信公司一段时间内的消费数据。共有7043笔客户资料,每笔客户资料包含21个字段,其中1个客户ID字段,19个输入字段及1个目标字段-Churn(Yes代表流失,No代表未流失),输入字段主要包含以下三个维度指标:用户画像指标、消费产品指标、消费信息指标。字段的具体说明如下:
03、数据读入和概览
首先导入所需包。
# 数据处理 import numpy as np import pandas as pd # 可视化 import matplotlib.pyplot as plt import seaborn as sns import plotly as py import plotly.graph_objs as go import plotly.figure_factory as ff # 前处理 from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler # 建模 from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn import tree from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neural_network import MLPClassifier from sklearn.svm import SVC from lightgbm import LGBMClassifier from xgboost import XGBClassifier # 模型评估 from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import confusion_matrix, accuracy_score, classification_report from sklearn.metrics import roc_auc_score, roc_curve, scorer from sklearn.metrics import recall_score, precision_score, f1_score, cohen_kappa_score pd.set_option('display.max_columns', None)
读入数据集
df = pd.read_csv('./Telco-Customer-Churn.csv') df.head()
04、数据初步清洗
首先进行初步的数据清洗工作,包含错误值和异常值处理,并划分类别型和数值型字段类型,其中清洗部分包含:
# 错误值处理 repl_columns = ['OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport','StreamingTV', 'StreamingMovies'] for i in repl_columns: df[i] = df[i].replace({'No internet service' : 'No'}) # 替换值SeniorCitizen df["SeniorCitizen"] = df["SeniorCitizen"].replace({1: "Yes", 0: "No"}) # 替换值TotalCharges df['TotalCharges'] = df['TotalCharges'].replace(' ', np.nan) # TotalCharges空值:数据量小,直接删除 df = df.dropna(subset=['TotalCharges']) df.reset_index(drop=True, inplace=True) # 重置索引 # 转换数据类型 df['TotalCharges'] = df['TotalCharges'].astype('float') # 转换tenure def transform_tenure(x): if x <= 12: return 'Tenure_1' elif x <= 24: return 'Tenure_2' elif x <= 36: return 'Tenure_3' elif x <= 48: return 'Tenure_4' elif x <= 60: return 'Tenure_5' else: return 'Tenure_over_5' df['tenure_group'] = df.tenure.apply(transform_tenure) # 数值型和类别型字段 Id_col = ['customerID'] target_col = ['Churn'] cat_cols = df.nunique()[df.nunique() < 10].index.tolist() num_cols = [i for i in df.columns if i not in cat_cols + Id_col] print('类别型字段:\n', cat_cols) print('-' * 30) print('数值型字段:\n', num_cols)
类别型字段: ['gender', 'SeniorCitizen', 'Partner', 'Dependents', 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod', 'Churn', 'tenure_group'] ------------------------------ 数值型字段: ['tenure', 'MonthlyCharges', 'TotalCharges']
05、探索性分析
对指标进行归纳梳理,分用户画像指标,消费产品指标,消费信息指标。探索影响用户流失的关键因素。
1. 目标变量Churn分布
经过初步清洗之后的数据集大小为7032条记录,其中流失客户为1869条,占比26.6%,未流失客户占比73.4%。
df['Churn'].value_counts() No 5163 Yes 1869 Name: Churn, dtype: int64
trace0 = go.Pie(labels=df['Churn'].value_counts().index, values=df['Churn'].value_counts().values, hole=.5, rotation=90, marker=dict(colors=['rgb(154,203,228)', 'rgb(191,76,81)'], line=dict(color='white', width=1.3)) ) data = [trace0] layout = go.Layout(title='目标变量Churn分布') fig = go.Figure(data=data, layout=layout) py.offline.plot(fig, filename='./html/整体流失情况分布.html')
2.性别
分析可见,男性和女性在客户流失比例上没有显著差异。
plot_bar(input_col='gender', target_col='Churn', title_name='性别与是否流失的关系')
3. 老年用户
老年用户流失比例更高,为41.68%,比非老年用户高近两倍,此部分原因有待进一步探讨。
plot_bar(input_col='SeniorCitizen', target_col='Churn', title_name='老年用户与是否流失的关系')
4. 是否有配偶
从婚姻情况来看,数据显示,未婚人群中流失的比例比已婚人数高出13%。
plot_bar(input_col='Partner', target_col='Churn', title_name='是否有配偶与是否流失的关系')
5. 上网时长
经过分析,这方面可以得出两个结论:
plot_bar(input_col='tenure_group', target_col='Churn', title_name='在网时长与是否流失的关系')
6. 付款方式
支付方式上,支付上,选择电子支票支付方式的用户流失最高,达到45.29%,其他三种支付方式的流失率相差不大。
pd.crosstab(df['PaymentMethod'], df['Churn'])
plot_bar(input_col='PaymentMethod', target_col='Churn', title_name='付款方式与是否流失关系')
7. 月费用
整体来看,随着月费用的增加,流失用户的比例呈现高高低低的变化,月消费80-100元的用户相对较高。
plot_histogram(input_col='MonthlyCharges', title_name='月费用与是否流失关系')
8. 数值型属性相关性
从相关性矩阵图可以看出,用户的往来期间和总费用呈现高度相关,往来期间越长,则总费用越高。月消费和总消费呈现显著相关。
plt.figure(figsize=(15, 10)) sns.heatmap(df.corr(), linewidths=0.1, cmap='tab20c_r', annot=True) plt.title('数值型属性的相关性', fontdict={'fontsize': 'xx-large', 'fontweight':'heavy'}) plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.show()
06、特征选择
使用统计检定方式进行特征筛选。
# 删除tenure df = df.drop('tenure', axis=1) from feature_selection import Feature_select # 划分X和y X = df.drop(['customerID', 'Churn'], axis=1) y = df['Churn'] fs = Feature_select(num_method='anova', cate_method='kf', pos_label='Yes') x_sel = fs.fit_transform(X, y)
2020 09:30:02 INFO attr select success! After select attr: ['DeviceProtection', 'MultipleLines', 'OnlineSecurity', 'TechSupport', 'tenure_group', 'PaperlessBilling', 'InternetService', 'PaymentMethod', 'SeniorCitizen', 'MonthlyCharges', 'Dependents', 'Partner', 'Contract', 'StreamingTV', 'TotalCharges', 'StreamingMovies', 'OnlineBackup']
经过特征筛选,gender和PhoneService字段被去掉。
07、建模前处理
在python中,为满足建模需要,一般需要对数据做以下处理:
# 筛选变量 select_features = x_sel.columns # 建模数据 df_model = pd.concat([df['customerID'], df[select_features], df['Churn']], axis=1) Id_col = ['customerID'] target_col = ['Churn'] # 分类型 cat_cols = df_model.nunique()[df_model.nunique() < 10].index.tolist() # 二分类属性 binary_cols = df_model.nunique()[df_model.nunique() == 2].index.tolist() # 多分类属性 multi_cols = [i for i in cat_cols if i not in binary_cols] # 数值型 num_cols = [i for i in df_model.columns if i not in cat_cols + Id_col] # 二分类-标签编码 le = LabelEncoder() for i in binary_cols: df_model[i] = le.fit_transform(df_model[i]) # 多分类-哑变量转换 df_model = pd.get_dummies(data=df_model, columns=multi_cols) df_model.head()
08、模型建立和评估
首先使用分层抽样的方式将数据划分训练集和测试集。
# 重新划分 X = df_model.drop(['customerID', 'Churn'], axis=1) y = df_model['Churn'] # 分层抽样 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0, stratify=y) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) #修正索引 for i in [X_train, X_test, y_train, y_test]: i.index = range(i.shape[0])
(5625, 31) (1407, 31) (5625,) (1407,)
# 保存标准化训练和测试数据 st = StandardScaler() num_scaled_train = pd.DataFrame(st.fit_transform(X_train[num_cols]), columns=num_cols) num_scaled_test = pd.DataFrame(st.transform(X_test[num_cols]), columns=num_cols) X_train_sclaed = pd.concat([X_train.drop(num_cols, axis=1), num_scaled_train], axis=1) X_test_sclaed = pd.concat([X_test.drop(num_cols, axis=1), num_scaled_test], axis=1)
然后建立一系列基准模型并比较效果。
假如我们关注roc指标,从模型表现效果来看,Naive Bayes效果最好。我们也可以对模型进行进一步优化,比如对决策树参数进行调优。
parameters = {'splitter': ('best','random'), 'criterion': ("gini","entropy"), "max_depth": [*range(3, 20)], } clf = DecisionTreeClassifier(random_state=25) GS = GridSearchCV(clf, parameters, scoring='f1', cv=10) GS.fit(X_train, y_train) print(GS.best_params_) print(GS.best_score_)
{'criterion': 'entropy', 'max_depth': 5, 'splitter': 'best'} 0.585900839405024
clf = GS.best_estimator_ test_pred = clf.predict(X_test) print('测试集:\n', classification_report(y_test, test_pred))
测试集: precision recall f1-score support 0 0.86 0.86 0.86 1033 1 0.61 0.61 0.61 374 accuracy 0.79 1407 macro avg 0.73 0.73 0.73 1407 weighted avg 0.79 0.79 0.79 1407
将这棵树绘制出来。
import graphviz dot_data = tree.export_graphviz(decision_tree=clf, max_depth=3, out_file=None, feature_names=X_train.columns, class_names=['not_churn', 'churn'], filled=True, rounded=True ) graph = graphviz.Source(dot_data)
输出决策树属性重要性排序:
imp = pd.DataFrame(zip(X_train.columns, clf.feature_importances_)) imp.columns = ['feature', 'importances'] imp = imp.sort_values('importances', ascending=False) imp = imp[imp['importances'] != 0] table = ff.create_table(np.round(imp, 4)) py.offline.iplot(table)
后续优化方向:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26