京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小伍哥
来源:AI入门学习
一、map函数
描述:接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素。如果传入了多个iterable参数,function 必须接受相同个数的实参并被应用于从所有可迭代对象中并行获取的项。
语法:map(function, iterable, ...)
#内置函数
list(map(abs,[-1,3,-5,8]))
[1, 3, 5, 8]
list(map(lambda x: x.center(3,'#'),['马云','马化腾','李彦宏']))
['#马云', '马化腾', '李彦宏']
#自定义函数,计算3次方
def square(x) :
return x ** 3
list(map(square, [1,2,3,4,5]))
[1, 8, 27, 64, 125]
# 使用 lambda 匿名函数
list(map(lambda x: x ** 3, [1, 2, 3, 4, 5]))
[1, 8, 27, 64, 125]
# 提供了两个列表,对相同位置的列表数据进行相加
list(map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10]))
[3, 7, 11, 15, 19]
list(map(lambda x: x%2==1, [1,3,2,4,1]))
[True, True, False, False, True]
描述:reduce方法,顾名思义就是减少,假设你有一个由数字组成的可迭代对象,并希望将其缩减为单个值。把一个函数作用在一个序列上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算reduce(f,[x1,x2,x3,x4,x5]) = f(f(f(x1,x2),x3),x4)
语法:reduce(function,sequence[,initial]=>value)
from functools import reduce
nums = [6,9,4,2,4,10,5,9,6,9]
print(nums)
[6, 9, 4, 2, 4, 10, 5, 9, 6, 9]
print(sum(nums))
64
print(reduce(lambda val,x: val+x,nums))
64
# 累计减法
reduce(lambda x,y:x-y,[1,2,3,4])
-8
#累计乘法
def multi(x,y):
return x*y
reduce(multi,[1,2,3,4])
24
reduce(lambda x,y:x*y,[1,2,3,4])
24
描述:filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表。
该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判断,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。
过滤器,构造一个序列,等价于:[ item for item in iterables if function(item)]
在函数中设定过滤条件,逐一循环迭代器中的元素,将返回值为True时的元素留下,形成一个filter类型数据。
语法:filter(function, iterable)
fil = filter(lambda x: x>10,[1,11,2,45,7,6,13])
fil# 可迭代对象,不能直接查看
list(fil)
[11, 45, 13]
def isodd(num):
if num % 2 == 0:
return True
else:
return False
list(filter(isodd,range(1,13)))
[2, 4, 6, 8, 10, 12]
描述:sorted() 函数对所有可迭代的对象进行排序操作。
语法:sorted(iterable, key=None, reverse=False)
sort 与 sorted 区别:
sort 是应用在 list 上的方法,sorted 可以对所有可迭代的对象进行排序操作;list 的 sort 方法返回的是对已经存在的列表进行操作,无返回值,而内建函数 sorted 方法返回的是一个新的 list,而不是在原来的基础上进行的操作。
a = [5,7,6,3,4,1,2]
b = sorted(a) # 保留原列表
a
[5, 7, 6, 3, 4, 1, 2]
b
[1, 2, 3, 4, 5, 6, 7]
#利用key
L=[('b',2),('a',1),('c',3),('d',4)]
sorted(L, key=lambda x:x[1])
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
#按年龄排序
students = [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
sorted(students, key=lambda s: s[2])
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
#按降序
sorted(students, key=lambda s: s[2], reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
#降序排列
a = [1,4,2,3,1]
sorted(a,reverse=True)
[4, 3, 2, 1, 1]
在看一个更实用的案例,加入一个列表存了各个品牌手机的销量以及售价,我们可以进行各种排序后输出。
info = [('Apple',800,9799),
('Xiaomi',40,3599),
('Oppo',40,4199),
('Vivo',100,4000),
('Huawei',40,6899),]
#正常排序
print(sorted(info))
[('Apple', 800, 9799), ('Huawei', 40, 6899), ('Oppo', 40, 4199), ('Vivo', 100, 4000), ('Xiaomi', 40, 3599)]
#按销量排序
print(sorted(info,key = lambda x: x[1],reverse=True))
[('Apple', 800, 9799), ('Vivo', 100, 4000), ('Xiaomi', 40, 3599), ('Oppo', 40, 4199), ('Huawei', 40, 6899)]
#按商品价格排序
print(sorted(info,key = lambda x: x[2],reverse=True))
[('Apple', 800, 9799), ('Huawei', 40, 6899), ('Oppo', 40, 4199), ('Vivo', 100, 4000), ('Xiaomi', 40, 3599)]
#先价格 再销量排序
print(sorted(info,key = lambda x: (x[2],x[1]),reverse=True))
[('Apple', 800, 9799), ('Huawei', 40, 6899), ('Oppo', 40, 4199), ('Vivo', 100, 4000), ('Xiaomi', 40, 3599)]
··· END ···
↓长按关注本号、加我交流↓
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31