作者:AI入门学习
来源:小伍哥
一、map函数
描述:接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素。如果传入了多个iterable参数,function 必须接受相同个数的实参并被应用于从所有可迭代对象中并行获取的项。
语法:map(function, iterable, ...)
#内置函数
list(map(abs,[-1,3,-5,8])) [1, 3, 5, 8] list(map(lambda x: x.center(3,'#'),['马云','马化腾','李彦宏'])) ['#马云', '马化腾', '李彦宏'] #自定义函数,计算3次方 def square(x) : return x ** 3 list(map(square, [1,2,3,4,5])) [1, 8, 27, 64, 125] # 使用 lambda 匿名函数 list(map(lambda x: x ** 3, [1, 2, 3, 4, 5])) [1, 8, 27, 64, 125] # 提供了两个列表,对相同位置的列表数据进行相加 list(map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])) [3, 7, 11, 15, 19] list(map(lambda x: x%2==1, [1,3,2,4,1])) [True, True, False, False, True]
描述:reduce方法,顾名思义就是减少,假设你有一个由数字组成的可迭代对象,并希望将其缩减为单个值。把一个函数作用在一个序列上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算reduce(f,[x1,x2,x3,x4,x5]) = f(f(f(x1,x2),x3),x4)
语法:reduce(function,sequence[,initial]=>value)
from functools import reduce nums = [6,9,4,2,4,10,5,9,6,9] print(nums) [6, 9, 4, 2, 4, 10, 5, 9, 6, 9] print(sum(nums)) 64 print(reduce(lambda val,x: val+x,nums)) 64 # 累计减法 reduce(lambda x,y:x-y,[1,2,3,4]) -8 #累计乘法 def multi(x,y): return x*y reduce(multi,[1,2,3,4]) 24 reduce(lambda x,y:x*y,[1,2,3,4]) 24
描述:filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表。
该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判断,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。
过滤器,构造一个序列,等价于:[ item for item in iterables if function(item)]
在函数中设定过滤条件,逐一循环迭代器中的元素,将返回值为True时的元素留下,形成一个filter类型数据。
语法:filter(function, iterable)
fil = filter(lambda x: x>10,[1,11,2,45,7,6,13]) fil at 0x28b693b28c8> # 可迭代对象,不能直接查看 list(fil) [11, 45, 13] def isodd(num): if num % 2 == 0: return True else: return False list(filter(isodd,range(1,13))) [2, 4, 6, 8, 10, 12]
描述:sorted() 函数对所有可迭代的对象进行排序操作。
语法:sorted(iterable, key=None, reverse=False)
sort 与 sorted 区别:
sort 是应用在 list 上的方法,sorted 可以对所有可迭代的对象进行排序操作;list 的 sort 方法返回的是对已经存在的列表进行操作,无返回值,而内建函数 sorted 方法返回的是一个新的 list,而不是在原来的基础上进行的操作。
a = [5,7,6,3,4,1,2]
b = sorted(a) # 保留原列表 a
[5, 7, 6, 3, 4, 1, 2]
b
[1, 2, 3, 4, 5, 6, 7] #利用key L=[('b',2),('a',1),('c',3),('d',4)]
sorted(L, key=lambda x:x[1])
[('a', 1), ('b', 2), ('c', 3), ('d', 4)] #按年龄排序 students = [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
sorted(students, key=lambda s: s[2])
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] #按降序 sorted(students, key=lambda s: s[2], reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)] #降序排列 a = [1,4,2,3,1]
sorted(a,reverse=True)
[4, 3, 2, 1, 1]
在看一个更实用的案例,加入一个列表存了各个品牌手机的销量以及售价,我们可以进行各种排序后输出。
info = [('Apple',800,9799), ('Xiaomi',40,3599), ('Oppo',40,4199), ('Vivo',100,4000), ('Huawei',40,6899),] #正常排序 print(sorted(info)) [('Apple', 800, 9799), ('Huawei', 40, 6899), ('Oppo', 40, 4199), ('Vivo', 100, 4000), ('Xiaomi', 40, 3599)] #按销量排序 print(sorted(info,key = lambda x: x[1],reverse=True)) [('Apple', 800, 9799), ('Vivo', 100, 4000), ('Xiaomi', 40, 3599), ('Oppo', 40, 4199), ('Huawei', 40, 6899)] #按商品价格排序 print(sorted(info,key = lambda x: x[2],reverse=True)) [('Apple', 800, 9799), ('Huawei', 40, 6899), ('Oppo', 40, 4199), ('Vivo', 100, 4000), ('Xiaomi', 40, 3599)] #先价格 再销量排序 print(sorted(info,key = lambda x: (x[2],x[1]),reverse=True)) [('Apple', 800, 9799), ('Huawei', 40, 6899), ('Oppo', 40, 4199), ('Vivo', 100, 4000), ('Xiaomi', 40, 3599)]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31