CDA数据分析师 出品
作者:Elad Cohen
编译:Mika
作为一家技术公司的副总裁,我在管理数据科学部门时,还需要处理大量的招聘工作。
通常,招聘人员在一份简历上花的时间平均只有7.4秒。
一个抢手的职位可能会吸引到一百余人投递简历。在本文中,我将教你几个技巧,帮助你在求职过程中让你的简历脱颖而出。
下面我将分享一下,在快速筛选数据相关职位简历时,我最看重的这7点。
在浏览简历时,我会快速看看你以前的职位,看是否与数据挂钩,有数据相关工作经验。
比如具体有数据相关项目的经验,在项目中通过什么方法解决了哪些问题,或者参加过数据相关的培训或课程。
接着,我还会看一下你曾从事工作的技术方面内容,以及业务成果。有许多精通技术的数据分析人员对业务术语并不擅长。因此如果你能清晰罗列出所做工作对业务KPI的影响,这将是加分项。
例如,指出模型在AUC方面的改进是可以的,但若能明晰模型改进会导致转换率增加,这意味着你有不错的业务知识,并且有数据赋能业务的意识。
看到以下的例子,比较用技术与业务两个不同侧重点,来描述相同工作的方案:
我还会看看求职者所受的教育情况如何,来自哪所学校,哪个专业。对于应届生,我还会考察他们的成绩等情况。
由于数据分析是一个新兴且较广泛的领域,并没有某种唯一的标准化测试。即使你没有相关专业的教育背景,但如果有该领域的从业经验或接受过数据相关培训也是可以的。
我看过不少排版美观的简历,也收到过一些没有任何格式的txt文本简历。在编写简历时,可以找一找好的模板,在有限的篇幅内清晰介绍自己的情况。
这里可以有效利用简历的空间。将页面分割开来,突出不按时间顺序排列的工作或教育经历。当中还可以包括你熟悉的技能,做过的项目,自己的Github或博客的链接等。同时,一些简单的图标也可以帮助强调标题。
许多求职者在他们熟悉的语言、工具旁边会用1-5颗星或柱状图代表自己的熟悉度。我个人不太喜欢这种方法,原因有几个。
有些人把语言和工具,甚至把语言和软技能混为一谈。把自己领导力的熟悉度填上“4.5星”是没有说服力的。
还有把自己技能的主观衡量标准变成饼状图的,比如Python技能占30%,团队合作能力占10%等。虽然这是一种突出自己的创新方式方式,但却显示了自己对不同图表概念缺乏基本了解。
以下有两份排版很不错的简历,可以用于参考:
两个示例中使用的垂直分割,以区分经验、技能、成就等。用简短的摘要段落能有助于描述求职人背景和期望。
我主要会看这两种类型。
一些求职者只使用深度学习,包括在结构化数据,而这些数据更适合基于树的模型。虽然使用深度学习本身没有问题,但限制的工具集会让你的解决方案有局限性。
正如马斯洛所说,“如果你唯一的工具是一把锤子,那么你就会把所有问题都看成是钉子。”
在我的日常工作中,我们处理的是结构化、领域驱动、特征工程化的数据,这些数据最好用各种形式的提升树来处理,光使用深度学习是不够的。
这通常与两个需要大量专业知识的领域有关--计算机视觉和自然语言处理。
这些领域的专家很抢手,在许多情况下,他们的整个职业生涯都将专注于这些领域。但对于一个从事一般数据分析工作的人来说,这通常不适合。因此,如果你的大部分经验是在自然语言处理领域,而你要申请该领域以外的职位,可以试着强调你曾在结构化数据方面工作过的经历,以展示多样性。
通常细分为语言、特定的包(scikit-learn、pandas、dplyr等)、云及其服务(AWS、Azure、GCP)或其他工具。
某些求职者将其与熟悉的算法或架构混在一起,比如RNN、XGBoost、K-NN。
就我个人而言,我更倾向于围绕技术和工具展开;当提到一个特定的算法时,我想知道求职者的机器学习理论知识是否仅限于这些特定的算法。
这部分,我会看技术栈的相关性。
技能点是否是近几年的,这表明求职者在主动学习新技能;还有技术栈的广度,表明求职者是否局限于特定的工具;以及与我们技术栈的匹配度。
你会在GitHub上有分享个人项目吗?参加Kaggle比赛或副业项目都是加分项。从中能够看你代码的简洁性、预处理的类型、特征工程、EDA、算法选择以及在实际项目中解决问题的能力。
这里如果有的话,可以附上你的GitHub和Kaggle链接,以便面试官深入了解你的代码。
同时要熟悉自己做过的项目,最好在面试前就梳理一遍。之前的面试中,就有求职者对项目不太熟悉,从而面试官无法就项目展开,进一步了解求职者在项目中做出的选择和背后的原理。记住,在罗列项目时,列出2-3个高质量的项目要比10个质量的更有效。
结语
如果你正在找数据相关的工作,可以花点时间过一遍文章中的要点,希望本文能对大家的求职有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12