CDA数据分析师 出品
编辑:JYD
对于很多初入数据分析领域的小白来说,往往都会陷入迷茫。数据分析的坑很大,一旦走上这条路,就要明确基本方向,不然只会越走越偏,最后耗费力气,毫无收获。
比如你想要成为一名数据分析师,你就可以到招聘网站看看,对应岗位的需求是什么?这样你就会对需要掌握的岗位技能架构有了初步认识。
数据分析领域对应的岗位非常多,经常把同学们绕晕。比如:数据分析、商业分析、运营分析、产品分析、销售分析、数据挖掘、算法模型等等。
如何区别这些让人眼花缭乱的概念,今天系统讲解一下。
数据分析师根据自己的工作岗位、行业、工作内容等等,可以分成非常多的种类。
但总体可以区分成两个方向,即业务方向和技术方向。当然,在业务和技能上两类也是需要相互结合的。
其中,想要短时间内快速成为技术方向的数据分析师,是非常很难的。一定要底子深基础牢,编程语言基础、统计学知识、算法、数据结构样样不能少,甚至得精通,而这些不是我们自习两三个月就能完全掌握的。
而业务方向的数据分析师,在目前的招聘市场上需求岗位最多。这种岗位的进入门槛会相对较低一点,所以对于0基础想转行的同学,自然业务型数据分析师会更适合。但如果入职后不能尽快掌握业务,提升自己的数据思维能力,就很有可能就变成“只会提数的表哥表姐”。
所以,想快速成为一名数据分析师,又不想入职后沦为“打杂”人员。就应该知道自己应该持续学习并掌握的各项技能,以及自己进入数据分析行业后的发展路径。
我分析了招聘网站上多个与数据分析的相关岗位,根据薪资高低大概分为三个等级。
各阶段数据分析师的差异体现在三个方面:业务技能、执行管理能力、业内影响力。
后两者能力属于软实力,需要在工作中逐渐掌握。作为初学者,第一步最需要的是掌握业务技能,最好能了解完整的学习路线。
初级水平:
掌握常见表格制作和数据库基本功能操作,就可以做业务数据分析师。
中级水平:
在初级水平基础上,对常见函数应用熟练,数据库操作熟练,掌握ETL能力,掌握统计分析模型,具备行业相关业务经验,可以进行简单的建模操作,就可以做策略数据分析师。
高级水平:
具备数据科学家能力,机器学习、深度学习算法能力、建模挖掘能力和建模挖掘能力突出,对行业业务逻辑深度认知,就可以做算法工程师、挖掘工程师。
所以我们该如何具备这些能力呢?
学习统计学
首先需要学习统计学。统计学部分主要分为三大模块。
第一个模块就是描述性统计。
可以帮助我们在拿到一个数据集的时候进行初步的统计分析。描述性统计当中需要掌握的概念有,比如集中趋势、离散趋势、数据分布、缺失值和异常值等等。
第二个模块是参数估计和假设检验。
这里需要掌握的大约有,比如点估计方法、置信度、置信区间、原假设、备择假设、P值、检验统计量等。
第三个模块是统计模型。
在这个模块当中,主要要掌握的包括卡方分析、方差分析、主成分分析、因子分析,以及统计模型的圆点:回归分析。
学习分析工具
首先需要学习统计学。统计学部分主要分为三大模块。
在学习完统计学之后,就要开始代码及编程部分,进入分析工具的学习了。
之前我们讲过入门数据分析必学的4大工具,这期我们直接来讲利用这些工具的要学会那些技能。
在Excel中我们主要需要掌握一些基本的计算函数、数据透视表以及VLOOKUP函数。
在SQL中我们主要掌握表的增、删、改、查、表连接、子查询以及窗口函数的运用和SQL语句的执行顺序。
在Python中,我们要掌握最基本的数据结构,包括列表、字典、字符串、元祖、数组、集合。还需要掌握基本的语句,比如说IF语句、For循环、while 循环。还要熟练运用Python中的各种库,比如有numpy/pandas等等。
最后还有数据可视化的分析工具BI。大家需要学习的包括仪表盘的制作,一些基本的计算函数的运用。
算法模型和机器学习
学习完工具后我们就要开始算法模型以及相关机器学习的部分知识了。
大家主要掌握的就是模型的原理、模型的运用,模型的调优以及效果的评估。机器学习部分主要可以分为:有监督学习以及无监督学习。在有监督学习中,主要可以分为回归算法与分类算法。而在无监督学习中,我们主要需要掌握的就是聚类算法和降维算法。
掌握业务知识
最后就是业务知识模块。
数据分析师必须要掌握一些行之有效的的数据分析方法,并能灵活的与自身实际工作相结合。数据分析师常用的数据分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
如果你也想快速成为一名数据分析师,欢迎咨询我们。顺便给大家提供了一份数据分析学习资料,欢迎扫码领取学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03