作者Renato Boemer,Renato Boemer
所以,你研究数据科学已经有一段时间了,现在你期待着下一步:找到你的第一份工作,成为一名数据科学家。然而,如果这不是你的第一份工作,那么这可能是你第一次申请一个与你之前的职业无关的角色。那么,为什么不从别人的错误中吸取教训呢?
在我关于将职业生涯转向DataScience的帖子中,我从DataQuest的在线学习开始。然后,今年早些时候,我做出了我职业生涯中最好的决定之一:我报名参加了Le Wagon训练营--我还为此写了《使徒行者》。尽管训练营本质上是密集的,但任何职业转变中最困难的部分是找到你的“第一份工作”。
最近,我加入了一家名为NextDoore的公司,是一家总部位于英国伦敦的数据科学家。但我找到第一份数据科学家工作的过程绝非易事。我已经申请了50多个角色,做了几次面试,其中一些是纯粹的技术或包括现场编码。在此期间,我学到了很多,我想分享五个可以帮助你找到第一份数据科学家工作的技巧:
这似乎很明显,但不幸的是,识别你不知道的东西并不容易。更糟糕的是,你可能认为你知道,但你不知道。让我举一个例子:在训练营期间,我使用SCIKIT-Learn的logistic回归创建了几个机器学习模型。我几乎直观地调优了惩罚参数,特别是在L1和L2之间,它们分别指套索和脊。到目前为止还好。
在我的第一次面试中,我决定加入这些概念来展示一些知识,但事与愿违。当我试图解释这种差异时,我意识到我知道如何应用它们,但我不明白背后的概念(更不用说数学了)。不用说,我没有得到那份工作。在这里,我的建议是深入研究一些项目,直到您逐行了解您的代码。试着在模拟面试中向其他同事解释为什么你选择了每个模型和参数。在去面试之前你会注意到许多可以填补的空白。这样做,你也会听起来流利地使用正确的术语,并感到自信地解释你的工作。
如果你真的想在你的头几个月里找到一份数据科学家的工作,那么你应该向那些有很多经验的人学习。老师和助教是很好的信息来源,所以每天都和他们说话。问一个关于招聘流程、面试以及如何管理与招聘人员的对话的问题,以了解更多关于公司和角色的信息。
另外,我和另外两个训练营的校友一起创建了一个slack频道。在这个频道中,我们分享我们的简历、求职信、面试和测试的反馈。我们讨论了面试问题和答案,我们总是分享我们的代码和笔记本来帮助对方。不要害怕分享你的工作,而是学会一起工作。毕竟,你的目标是一样的:尽快成为一名数据科学家。
你没有数据科学家的“商业经验”,这应该会让任何招聘人员感到惊讶。只要看一下你的简历,任何人都能看出你正在寻找你的第一份工作。也就是说,不要试图把自己推销为专家数据科学家(来自Kaggle projects),这不是你现阶段最有价值的技能。
在我得到Nextdoor的工作机会后,人力资源经理给了我八次面试的反馈。它可以概括为一个“赞成”和一个“反对”:我渴望学习,但我没有编码经验。我所学到的是,招聘经理正在寻找那些热衷于学习新事物并跟上行业的人。
所以,表现出你是一个好奇的人,你喜欢学习数据相关主题的过程,你每天都在练习编码。展示你对数据、计算机科学、统计学领域的热情。您对持续学习的动机和承诺将(而且应该)超过您当前的编码技能。
在没有经历过的情况下知道自己想要什么有点抽象。你怎么知道你想成为一名数据科学家,而不是机器学习工程师、数据工程师或数据分析师?起初,所有这些职位看起来都很相似,也许你会接受其中任何一个作为你的第一份工作。嗯,我一开始就是这么想的,这是个错误。
求职阶段的关键区别在于面试的准备。如果你知道你想要一份数据科学家的工作,请确保你确切地知道数据科学家是做什么的。当你研究的时候,一些细微差别会开始凸显出来。例如,数据科学家倾向于不使用数据分析师使用的Tableau或数据工程师使用的Docker。您不必开发广泛的数据科学知识,相反,您可以提高您在新工作中所需的深度。一些例子包括Pandas、Numpy、Scikit-learn线性和logistic回归、matplotlib和Seaborn。如果你掌握了这些,我相信你很快就会得到一份数据科学家的工作。
我怎么强调都不为过:请习惯被招聘人员、招聘经理和公司拒绝。在寻找第一份数据科学家工作的过程开始时,你的积极性很高,没有什么能阻止你。
然而,随着几周时间的流逝,拒绝信不断出现在你的收件箱里,你的动力水平不可避免地崩溃了。有很多数据科学家的角色,以及越来越多的候选人。此外,招聘过程很慢,但从候选人的角度来看要慢得多。我在新工作两个月后收到了拒绝的电子邮件。不管怎样,被拒绝是很自然的。
一个让你的动机保持高昂的想法是与一群正在经历同样过程的朋友分享。就像我之前说过的,与其他校友建立一个松弛的渠道,分享你的挫折。我相信他们也在经历同样的事情。这一点很重要,因为您会注意到您在编码方面并不是垃圾,这只是时间、一致性和努力的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31