“数据科学家是用来分析和解释复杂数字数据的人,如网站的使用统计数据,尤其是为了帮助企业决策。”
-牛津词典
“数据分析师是处理数据以提供洞察力的专业人员,他们获取原始或非结构化数据,并提出分析结果,以产生可消化的结果,供高管和其他人用于决策。”
-Techopedia
“数据科学家是能够根据过去的模式预测未来的人,而数据分析师只是从数据中获得有意义的见解的人。
所以现在我们有了定义,我认为真正理解两者区别的最好方法是进行比较。
*建议这样做。还有其他途径可以成为一名数据科学家/分析人员。看看我之前的帖子。
虽然他们在两种职业道路上有许多相似之处,但也有许多不同之处。数据科学家得到的报酬越高,责任就越大。这项额外的责任需要更多的学习、更多的知识和更多的练习您的编码技能。
下面是一些建议,如果您希望从数据分析师过渡到数据科学家,我会建议您做些什么。
扮演数据科学家的角色。
如果您已经决定转变为一名数据科学家,您必须做了大量额外的阅读,以完全理解成为一名数据科学家所需要的内容。您将从描述数据的趋势到使用现有数据发现新数据,并建立机器学习模型来支持您的假设。
数据科学家:
提高技能。
作为一名数据分析师,您可能不是每天都在编码。你的工作要求包括你编写代码和使用你的技术技能,然而,你的一些时间可能被分配到其他地方,例如识别趋势以帮助商业决策。作为一名数据科学家,拥有编写代码的能力是至关重要的,因为您将在大部分时间内进行编写,同时还要能够轻松地切换和使用不同的编程环境。这可能要求您理解常用的不同编程语言(如R、Python和Java)的语法。
与数据科学家相比,数据分析家使用的数学和统计方法非常少。因此,复习你的数学和统计数据将对你大有裨益,因为你将不得不在你的日常生活中应用这些知识。您将不得不从头开始编写算法,并充分理解这些机器学习算法是如何工作的。
你做的代码越多,你学的编程语言越多,你就会成为更好的数据科学家。你可以通过练习你的代码,创建辅助项目,参与到代码挑战中,比如Kaggle、LeetCode等等来实现以上两点。你知道你是否能成为一名数据科学家的唯一方法,就是练习过数据科学家的生活。
如果您打算从数据分析师过渡到数据科学家,我希望这能帮助您了解这两个角色之间的差异,并为您提供指导。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20