注意:这是本文的第二部分。你可以在这里阅读第一部分。
当产品发生变化时,人们对它的反应会有所不同。有些人习惯于产品的工作方式,不愿意改变。这被称为首要效应或改变厌恶。其他人可能会欢迎变化,一个新功能吸引他们更多地使用产品。这被称为新奇效应。然而,这两种影响都不会持续很长时间,因为人们的行为在一定时间后会稳定下来。如果a/B测试有较大或较小的初始效应,这可能是由于新的或首要效应。这是实践中常见的问题,很多面试问题都是关于这个话题的。一个面试样本问题是:
我们在一个新特性上运行了一个a/B测试,测试成功了,所以我们向所有用户启动了这个更改。然而,在推出该特性一周后,我们发现治疗效果迅速下降。怎么回事?
答案是新奇效应。随着时间的推移,随着新鲜感的消退,重复使用会减少,所以我们观察到治疗效果下降。
现在您理解了新奇和首要效应,我们如何解决潜在的问题?这是面试中典型的跟进问题。
处理这种影响的一个方法是完全排除那些影响的可能性。我们可以只对首次用户运行测试,因为新奇效应和首要效应显然不会影响这类用户。如果我们已经进行了测试,并且我们想要分析是否有新颖性或首要效应,我们可以(1)将控制组新用户的结果与治疗组的结果进行比较,以评估新颖性效应(2)将第一次用户的结果与治疗组现有用户的结果进行比较,以获得新颖性或首要效应影响的实际估计。
在A/B试验的最简单形式中,有两种变体:对照(A)和治疗(B)。有时,我们运行一个测试与多个变体,看看哪一个是最好的所有功能。当我们要测试一个按钮的多种颜色或测试不同的主页时,可能会发生这种情况。然后我们会有不止一个治疗组。在这种情况下,我们不应该简单地使用0.05的相同显著性水平来决定检验是否显著,因为我们处理的是2个以上的变异体,错误发现的概率增加。例如,如果我们有3个治疗组与对照组进行比较,观察到至少1个假阳性的机会是多少(假设我们的显著性水平是0.05)?
我们可以得到没有假阳性的概率(假设组是独立的),
PR(FP=0)=0.95*0.95*0.95=0.857
然后获得至少有1个假阳性的概率
Pr(FP>=1)=1-Pr(FP=0)=0.143
只有3个治疗组(4个变异),假阳性(或I型错误)的概率超过14%。这称为“多重测试”问题。一个面试问题是
我们正在运行一个测试与10个变体,尝试我们的登陆页面的不同版本。1个处理获胜,P值小于0.05。你能改变吗?
答案是否定的,因为多重测试问题。有几种方法来接近它。一种常用的方法是Bonferroni校正。它将显著性水平0.05除以试验次数。对于面试问题,既然我们测量了10个测试,那么测试的显著性水平应该是0.05除以10等于0.005。基本上,只有当检验的p值小于0.005时,我们才声称检验是显著的。Bonferroni校正的缺点是它往往过于保守。
另一种方法是控制错误发现率(FDR):
fdr=e[#假阳性/#拒绝]
它度量了所有对零假设的拒绝,即所有你声明有统计上显著差异的度量。他们中有多少人有真正的差异,而有多少人是假阳性。只有当您有大量的度量,比如数百个时,这才有意义。假设我们有200个指标,并将FDR上限设为0.05。这意味着我们可以看到5次假阳性。我们每次都会在那200个指标中观察到至少10个假阳性。
理想情况下,我们看到了实际的显著治疗结果,我们可以考虑向所有用户推出该功能。但有时,我们会看到相互矛盾的结果,例如一个指标上升而另一个下降,因此我们需要做出输赢的权衡。一个面试样本问题是:
运行测试后,您会看到所需的指标,例如点击率在上升,而印象数在下降。你会怎么做决定?
在现实中,产品推出决策可能涉及到很多因素,如实施的复杂性、项目管理的努力、客户支持成本、维护成本、机会成本等。
在采访中,我们可以提供解决方案的简化版本,重点放在实验的当前目标上。它是为了最大限度地参与,保留,收入,还是其他什么?此外,我们希望量化负面影响,即非目标度量中的负面变化,以帮助我们做出决定。例如,如果收入是目标,我们可以选择它,而不是最大限度地参与,假设负面影响是可以接受的。
最后,我想向您推荐两个参考资料,让您更多地了解A/B测试。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30