数据现在被认为是增长最快、价值数十亿美元的行业之一。因此,公司和组织正试图最大限度地利用他们已经拥有的数据,并确定他们仍然需要捕获和存储哪些数据。此外,对数据科学家来说,理解这些数字的意义并为混乱的商业问题揭示隐藏的解决方案仍然是一个令人难以置信的需求。最近使用LinkedIn求职工具进行的一项研究显示,2020年的大多数顶级科技职位都需要数据科学技能。
在数据科学领域有许多令人兴奋的机会,对自己进行数据科学方面的教育是获得在这个竞争领域脱颖而出所需的技能和经验的一个很好的方法,也是让你的雇主在竞争中占据优势的一个很好的途径。在进入数据科学领域之前,检查以下问题以评估数据科学是否真的适合您是很重要的。
数据科学是一个如此广泛的领域,包括数据准备和探索、数据表示和转换、数据可视化和表示、预测分析、机器学习、深度学习、人工智能等几个细分领域。可以考虑数据科学能力的三个级别(3个级别是根据现有最好的机器学习教科书之一所涉及的主题定义的:Sebastien Raschka的Python machine learning,3RdEdition),即:Level1(基本级别);Level2(中级级别);和Level 3(高级)。能力从级别1增加到级别3,如下面的图1所示。
数据科学家利用数据得出意义和有洞察力的结论,这些结论可以推动机构或组织的决策。他们的工作职责包括数据收集、数据转换、数据可视化和分析、建立预测模型、根据数据发现提供实施行动的建议。数据科学家在不同的部门工作,如医疗保健、政府、工业、能源、学术界、技术、娱乐等。雇佣数据科学家的一些顶级公司是亚马逊、谷歌、微软、脸书、领英、推特、网飞、IBM等。
数据科学家的工作前景非常乐观,IBM预测到2020年对数据科学家的需求将飙升28%。最近使用LinkedIn求职工具进行的一项研究显示,2020年的大多数顶级科技职位都需要数据科学、商业分析、机器学习和云计算方面的技能(参见下面的图2)。
作为一名数据科学家,你的收入取决于你所工作的组织或公司、你的教育背景、你的经验年限和你的具体工作角色。数据科学家的收入在5万至25万美元之间,工资中位数约为12万美元。这篇文章更多地讨论了数据科学家的工资。
大多数数据科学或业务分析程序都需要以下内容:
因此,为了准备数据科学领域的职业生涯,您可以从攻读定量学科的学士学位开始,例如科学、技术、工程、数学、商业或经济学。
如果您对学习数据科学的基础感兴趣,您需要从某个地方开始。不要被数据科学家招聘广告中提到的编程语言列表所淹没。虽然学习尽可能多的数据科学工具是很重要的,但建议从一两种编程语言开始。然后,一旦您在数据科学方面建立了坚实的背景,您就可以挑战自己,学习不同的编程语言或不同的平台和生产率工具,这些工具可以增强您的技能。根据这篇文章,Python和R仍然是数据科学中使用的两种顶级编程语言。我建议从Python开始,因为越来越多的学术培训项目和行业正在使用Python作为数据科学的默认语言。
如果您在分析学科方面有扎实的背景,例如物理学、数学、工程学、计算机科学、经济学或统计学,那么您基本上可以自学数据科学的基础知识。您可以从诸如X、Coursera、Ordatacamp等平台上的免费在线课程开始。第1级能力(参见图1)可在6至12个月内实现。第2级能力可在7至18个月内实现。第3级能力可在18至48个月内实现。获得一定水平的能力所需的时间取决于你的背景和你愿意在数据科学研究上投入多少时间。通常,具有分析学科(如物理、数学、科学、工程、会计或计算机科学)背景的个人比具有数据科学不互补背景的个人需要更少的时间。
数据科学项目可能很长,要求很高。从问题框架到模型构建和应用,这个过程可能需要几周甚至几个月的时间,这取决于问题的规模。作为一名实践中的数据科学家,在一个项目中遇到障碍是不可避免的。耐心、坚韧和毅力是成功的数据科学职业生涯所必需的关键品质。
数据科学是一个非常实用的领域。请记住,你可能非常擅长处理数据,并构建良好的机器学习算法,但作为一名数据科学家,现实世界的应用程序才是最重要的。每一个预测模型都必须在现实环境中产生有意义和可解释的结果。预测模型必须根据现实进行评估,才能被认为有意义和有用。作为一名数据科学家,你的角色是从数据中提取有意义的见解,这些见解可以用于数据驱动的决策,这些决策可以提高公司的效率或改进业务进行的方式,或者帮助增加利润。
数据科学家需要能够与团队中的其他成员或组织中的业务管理员交流他们的想法。良好的沟通技巧将在这里发挥关键作用,以便能够向对数据科学中的技术概念了解甚少或根本不了解的人传达和呈现非常技术性的信息。良好的沟通技巧将有助于与其他团队成员如数据分析师、数据工程师、现场工程师等建立团结和团结的氛围。
数据科学是一个不断发展的领域,所以要准备好拥抱和学习新技术。与该领域的发展保持联系的一种方法是与其他数据科学家建立网络。一些促进联网的平台是LinkedIn、GitHub和medium(面向数据科学和面向AI出版物)。这些平台对于了解该领域最近发展的最新信息非常有用。
作为一名数据科学家,您将在一个由数据分析师、工程师、管理员组成的团队中工作,因此您需要良好的沟通技巧。您还需要成为一个好的倾听者,尤其是在项目开发的早期阶段,您需要依赖工程师或其他人员来设计和构建一个好的数据科学项目。成为一个优秀的团队成员可以帮助你在商业环境中茁壮成长,并与团队其他成员以及组织的管理员或董事保持良好的关系。
在数据科学中,伦理和隐私考虑是必须的。你需要理解你的项目的含义。对自己诚实。避免操纵数据或使用会故意在结果中产生偏见的方法。从数据收集和分析到模型建立、分析、测试和应用的所有阶段都要符合道德规范。避免为了误导或操纵观众而捏造结果。在解释数据科学项目发现的方式上要合乎道德。
如果你的情况允许,你可以攻读数据科学或商业分析的硕士学位。如果你负担不起硕士学位课程,你可以寻求自学路线来学习数据科学。通常,如果您在分析学科(如物理、数学、经济学、工程或计算机科学)方面有asolid背景,并且您对探索数据科学领域感兴趣,最好的方法是从大规模开放在线课程(massive open online courses,MOOCs)开始。然后,在建立了坚实的基础之后,您可能会寻求其他方法来增加您的知识和专长,例如从教科书中学习,参与项目,以及与其他数据科学抱负者建立联系。
下面是推荐的MOOCs和教科书,可以帮助您掌握数据科学的基础知识。
推荐的MOOC:
数据科学专业证书(HarvardX,通过edX)
分析:基本工具和方法(Georgia TechX,通过edX)
应用数据科学与Python专门化(密歇根大学,通过Coursera)
推荐书籍:
从教科书中学习提供了比从在线课程中获得的更精细和深入的知识。这本书提供了数据科学和机器学习的伟大介绍,包括代码:塞巴斯蒂安·拉什卡的“Python机器学习”。https://github.com/rasbt/python-machine-learning-book-3dition
作者以一种很容易理解的方式解释了机器学习中的基本概念。此外,还包括代码,因此您可以实际使用提供的代码来实践和构建自己的模型。我个人发现这本书在我作为一名数据科学家的旅程中非常有用。我会把这本书推荐给任何有数据科学抱负的人。所有你需要的是基本的线性代数和编程技能,以便能够理解这本书。
还有许多其他优秀的数据科学教科书,如Wes McKinney的“Python for data Analysis”,Kuhn和Johnson的“应用预测建模”,以及Ian H.Witten,Eibe Frank和Mark A.Hall的“数据挖掘:实用机器学习工具和技术”。
总之,我们讨论了14个重要的数据科学领域的常见问题。对于不同的个人来说,基于他们的背景,数据科学的旅程可能是不同的,但本文提供的答案可以为考虑数据科学领域的个人提供一些指导。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16