这篇文章是为那些属于下列类别之一的人准备的:
你可能在想,“我有机会吗?”
答案是:“是的,有可能。”
好消息是,您已经通过了第一步,这就是您对数据科学感兴趣。现在这将不是一个容易的旅程,因为您是一个失败者,但要把它作为每天激励自己的燃料。
最重要的是,我要给你我的建议,我希望我在开始的时候有。
首先,介绍一下我自己…
我有商科学位,但从大学二年级开始,我就对机器学习感兴趣。因此,我自学了我今天所知道的大部分知识,我很幸运地在几个数据分析师/数据科学工作中工作。
我为什么要告诉你这些?我想说清楚,我曾经和你处于类似的位置!
请记住,这是一个长期目标,因此您应该期待长期的结果。如果你愿意付出100%的努力,我会给你至少一年的时间来决定是否继续下去。
说到这里,让我们潜入其中:
进入数据科学可以归结为两件事,增长和展示您的技能。
不久前,我写了一篇文章,“如果我可以重新开始,我将如何学习数据科学。”在这篇文章中,我将学习的内容按学科划分,即统计与数学、编程基础和机器学习。
在这篇文章中,我将根据你的理解水平来划分你应该学习的内容。
级别0:基本原理
你必须从基础开始,构建块,无论你想怎么称呼它。但是相信我,当我说这些的时候,你的基础越好,你的数据科学之旅就会越顺利。
特别是,我建议您在以下主题中建立基础知识:统计与概率、数学和编程。
统计和概率:如果你读过我以前的文章,那么你可能已经听过第一百万次了,但是数据科学家实际上只是一个现代统计学家。
数学:取决于你在高中时的注意力,这将决定你需要花多少时间学习基础数学。您应该学习以下三个方面:微积分、积分和线性代数:
编程:就像对数学和统计数据有一个基本的理解是很重要的一样,了解编程中的核心基础知识会使您的生活变得容易得多,尤其是在实现方面。因此,我建议您在深入研究机器学习算法之前,先花时间学习基本的SQL和Python。
级别1:专门化
一旦你学会了基础知识,你就准备好专门化了。在这一点上,你是否想专注于机器学习算法、深度学习、自然语言处理、计算机视觉等就取决于你了…
你可以专攻的东西还有那么多,所以在你做决定之前,请多探索一下!
第2级:练习
像其他任何事情一样,你必须练习你学到的东西,因为你失去了你不用的东西!以下是我推荐的3个资源,可以用来练习和改进你的技能。
学习数据科学是一回事,但人们通常忘记的是营销自己--你最终会想展示你学到的东西。如果您没有与数据科学相关的学位,这对您来说尤其重要。
一旦你完成了几个个人数据科学项目,下面是你展示它们和推销自己的几种方法:
您的简历
首先,利用你的简历展示你的数据科学项目。我建议创建一个名为“个人项目”的部分,在那里你可以列出你已经完成的两到三个项目。
同样,您也可以在LinkedIn上的“projects”部分添加这些项目。
GitHub存储库
如果您还没有创建Github存储库,我强烈建议您创建一个Github存储库。当我们讨论Github的主题时,学习Git将是一个好主意。在这里,您可以包含所有的数据科学项目,更重要的是,您可以与其他人共享您的代码以供查看。
如果你有一个Kaggle帐户,并在Kaggle上创建笔记本,这也是一个很好的选择。
一旦你有了一个活跃的Kaggle或Github账户,确保你的账户URL在你的简历、领英和网站上都有。
个人网站
说到网站,我强烈建议以网站的形式建立一个数据科学投资组合。HTML和CSS是非常简单的学习,这将是一个有趣的项目!如果你没有时间,像Squarespace这样的东西也会很好地工作。
中型博客
我有偏见,因为这对我来说很有效,但这并不意味着我不能推荐写博客!使用像Medium这样的平台,您可以编写项目演练,就像我的onWine Quality Prediction一样。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31