数据分析的作用
单纯的谈数据分析的作用其实意义并不大,所以在谈论作用之前我们首先的考虑是受众对象,比如对个人而言,因为身体传感设备,让我们的日常锻炼、身体素质等各项指标都得以数据化,最终完成个人身体和生活习性的自我量化,进而改进调节个人日常生活规律,让我们更好的生活。而对于企业而言,数据分析的作用则主要体现在三大领域:一是对业务的改进优化;二是帮助业务发现机会;三是创造新的商业价值。
改进优化业务方面,通俗的说就是让业务变得更好。让业务变得更好对企业而言主要体现在两大方面:一是对企业用户体验的改进方面,优化原有业务流程,为用户提供更好的用户体验。例如:早些年QQ游戏大厅对玩家进入游戏的流程再造,将原有的游戏进入登录环节从4个变更为3个。二是体现在对企业资源的合理化分配利用上,更合理的优化配置企业资源,进而达到效益最大化的目的。例如我们企业日常运营中的广告投放以及内部广告资源分配优化等就属于此范畴,一方面利用精准化广告投放,提高广告投放效率,另一方面根据广告引流客户量的大小做好企业资源分配,进而提高用户体验,提升用户留存率。
帮助业务发现机会主要是利用数据查找发现人们思维上的盲点,进而发现新的业务机会的过程。例如游戏企业常在游戏中埋点记录玩家的游戏操作行为数据以及关键节点进程数据,以达到控制游戏进度和难易度的目的,而这个过程中可能会发现新的业务机会,进而扩展出譬如游戏安全操作标准及游戏安全产品之类的新业务渗透点。
创造新的商业价值模式方面,主要是在数据价值的基础上形成新的商业模式,将数据价值直接转化为金钱模式或离金钱更近的过程。例如2014年炒的比较火的个人征信业务就属于此类,腾讯、阿里巴巴等企业就利用其拥有广泛用户数据的基础上,分别成立了腾讯征信、芝麻信用等新的业务关联企业,而这些征信企业进而衍生出相关“刷脸”业务,将其扩展到租车、租房等领域。
此外,数据分析在企业运营过程中还发挥着“医生”般的作用,一方面提供对企业日常运营活动的体检服务,对业务运营过程中可能会出现的问题作预警,将问题处理在萌芽状态,防患于未来。例如企业业务扩充过程中的投资合并,对投资合并对象的背景和发展历史等情况的尽职调查就属于此类,另一方面则提供企业日常运营过程中的“巡诊就诊”服务,找出企业日常运营中的问题。揭露过去&预测未来。
数据分析的工作内容
5W1H基本回答了数据分析的工作内容,What(什么)——分析什么数据?When(何时)——什么时候数据分析?Where(那里)——从那里获取数据?Which(那个)——采用什么分析工具处理分析数据?Who(谁)——采用那个供应商的基础数据服务,帮你构建数据产品或处理数据?How(怎样)——如何进行数据分析?
·What 分析什么数据
分析什么数据与数据分析的目的有关,通常确定问题后,然后根据问题收集相应的数据,在对应的数据框架体系中形成对应的决策辅助策略,这个过程也是一个反复博弈的过程。
·When 什么时候数据分析
数据分析基本上贯彻了业务运营的各个环节,也就是在业务运营过程中要做到全程数据跟踪。例如电子商务中的商品选择、商品陈列、更新、广告投放引流跟踪、效果评估、客户跟踪等等都需要数据支撑。
·Where 从那里获取数据
企业通常的数据来源可分为两大类:内部来源数据和外部来源数据。对于互联网企业而言,内部数据主要包括网络日志相关数据、客户信息数据、业务流程数据等,而外部数据则主要包括各类第三方监测数据、企业市调数据、行业规模数据等。
·Which 那个数据分析工具处理数据
数据处理分析的工具非常多,也非常的细。用什么样的工具常常取决于企业的具体需求,不管怎样,相对于各类工具而言,操作工具的人更加重要。通常,企业在人与对应的工具上的投入比大约为9:1,也就是说当你投入10元钱在数据分析工具上的时候,那么你的企业对入在对应的人上的成本大约90元。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21