使用R进行统计分析--概率计算
R语言中提供了很多概率函数,可以方便的计算事件发生的概率。如二项分布概率函数和泊松分布概率函数。本篇文章介绍如果使用R语言中的这些函数求解事件发生的概率。
概率函数和前缀
R语言中每个概率分布都有对应的函数名称,例如二项分布是binmo,泊松分布是pois,正态分布是norm等等。每个函数都分别有四个不同的前缀,加上前缀可以生成随机数,求解概率和临界值等等。下面是四个前缀对应功能的说明。
r = random = 随机
d= density = 密度
p= probability = 概率
q =quantile = 分位
二项分布概率
假设网站的Landingpage页面中共有20个入口,那么我们预估每个入口被点击的概率为1/20,即P=0.05。(实际情况会复杂一些,每个入口在页面中的位置和展现的形式都 会不一样,一般首屏的入口比后面的入口会获得更多点击,图片和按钮形式的入口比文字类的入口更容易受到关注,导航和焦点图和Action按钮比其他类型的入口更容易 被点击。如有要获得最真实的点击概率,需要参考这个页面中每个入口的历史点击概率数据,这里我们只是假设一种理想情况来说明计算过程。)那么在10000次点击中, 关键按钮获得550次的概率是多少?
先来简单介绍下R语言中的二项分布函数和其中参数的含义,二项分布函数为binom,前缀d表示求密度,前缀p表示求累计概率。参数中X表示实验的成功次数,size表示实验次数,prob表示概率值。在这个例子中成功次数是550,实验次数是10000,概率为0.05。
#点击率0.05的情况下10000次点击中关键按钮恰好被点击550次的概率 > dbinom(x = 550,size = 10000,prob = 0.05)
[1] 0.001362855
经过计算10000次点击中关键按钮恰好被点击550次的概率为0.0013,这只是550次这个事件发生的概率值,并不包含549次点击和551次点击。但实际情况中恰好获得550并不是我们实际的目标。因此我们换一种计算方法再来看下。
#点击率0.05的情况下10000次点击中关键按钮被点击1-550次的概率
> sum(dbinom(x = 1:550,size = 10000,prob = 0.05))
[1] 0.9889429
在成功次数X中从之前的550变成了1:550,然后进行sum求和。获得从1点点击到550次点击的累计概率。从结果中可以看到概率高达0.98。这能说明10000次点击中关键按钮获得550次点击的概率非常高吗?我们能信心满满的说获得550次点击是个高概率事件吗?恐怕还不行。因为这是一个累计概率值,是从1次到550次的汇总。但我们的目标是获得550次或更多的点击,那么550次以下的点击量概率其实是我们不需要的。因此实际的概率值没有这么高。
> pbinom(q = 550,size = 10000,prob = 0.05)
[1] 0.9889429
计算积累概率值还有一个更简单的方法就是在二项分布概率函数的前面加前缀p,就可以自动获得550次点击的累计概率值了。结果与前面的方法一致。
#点击率0.05的情况下10000次点击中关键按钮获得500次到550次区间的点击的概率
> sum(dbinom(x = 500:550,size = 10000,prob = 0.05))
[1] 0.4953496
前面两种方法获得的概率值一个太低,一个太高。还有一种方法是只计算某个区间的概率值,这里我们将获得点击的次数限定在500次——550次之间,来求这一区间的概率值。从结果来看10000次点击中关键按钮获得500次——550次点击的概率为0.49。
#点击率0.05的情况下10000次点击中关键按钮分别获得500次到550次点击的概率
> dbinom(x = 500:550,size = 10000,prob = 0.05)
[1] 0.018301669 0.018265138 0.018190454 0.018078155 0.017929014 0.017744025 0.017524393 0.017271524 0.016987006 0.016672594 0.016330195
[12] 0.015961845 0.015569690 0.015155968 0.014722985 0.014273095 0.013808680 0.013332131 0.012845824 0.012352105 0.011853270 0.011351550
[23] 0.010849097 0.010347966 0.009850108 0.009357356 0.008871418 0.008393869 0.007926149 0.007469553 0.007025237 0.006594211 0.006177343
[34] 0.005775361 0.005388857 0.005018291 0.004663995 0.004326183 0.004004957 0.003700313 0.003412150 0.003140280 0.002884435 0.002644275
[45] 0.002419399 0.002209352 0.002013632 0.001831702 0.001662993 0.001506913 0.001362855
以上是点击量500次——到550次分解的概率值,0.49的概率值由以上的各个概率汇总而来。
#点击率0.05的情况下10000次点击中关键按钮获得550次以上点击的概率
> sum(dbinom(x = 551:10000,size = 10000,prob = 0.05))
[1] 0.01105708
再来看最开始的问题,10000次点击中关键按钮获得550次点击的概率。550次以下的点击不是我们希望的结果,因此我们再来看下点击量超过550次的概率有多少。从结果 来看获得点击量在551次——10000次的概率仅为0.011,因此获得超过550次以上的点击的概率比较低。
#点击率0.05的情况下10000次点击中关键按钮获得550次以上点击的概率
> 1-pbinom(q = 550,size = 10000,prob = 0.05)
[1] 0.01105708
由于从0到10000次点击的所有概率为1,因此用1减550次以下的概率值也能获得相同的结果。
泊松分布概率
假设在一次市场活动中,上一个小时中有40个用户注册,那么下一个小时有50个用户注册的概率是多少?
这里需要使用泊松分布概率函数,泊松分布函数是pois,第一个参数x是下一个时间段事件发生的次数,lambda是上一个时间段事件发生的次数。在这个例子中x=50, lambda=40。
#上一小时产生40个注册用户,下一小时产生恰好50个注册用户的概率
> dpois(x = 50,lambda = 40)
[1] 0.01770702
经过计算,下一个小时恰好有50个注册用户的概率为0.017。与二项分布中的问题一样,0.017是恰好50个用户的概率。不是49个用户也不是51个用户的概率。
#上一小时产生40个注册用户,下一小时产生1-50个注册用户的概率
> sum(dpois(x = 1:50,lambda = 40))
[1] 0.947372
把下一小时注册用户的数量改为1:50,并进行求和,获得了下一个小时获得1-50个注册用户的累计概率值。这个值有0.94。但我们的目标是50个注册用户,虽然概率很高 但低于50的事件发生并不是我们的目标。
> ppois(q = 50,lambda = 40)
[1] 0.947372
这是另一种计算方法,把泊松分布函数的前缀换为p,计算50个注册用户的累计概率值,结果与前面的方法一致。
#上一小时产生40个注册用户,下一小时产生40-50个注册用户区间的概率
> sum(dpois(x = 40:50,lambda = 40))
[1] 0.4684008
前一小时40个注册用户,后一个小时目标50个注册用户,我们来看下下一个小时注册用户是40-50这个区间的概率是多少。经过计算这个区间发生的概率为0.46。
#上一小时产生40个注册用户,下一小时分别产生40-50个注册用户的概率
> dpois(x = 40:50,lambda = 40)
[1] 0.06294704 0.06141175 0.05848738 0.05440686 0.04946078 0.04396514 0.03823056 0.03253664 0.02711387 0.02213377 0.01770702
这里显示了40-50个注册用户分别的发生概率,0.46的概率值由以上各个概率值汇总计算获得。
#上一小时产生40个注册用户,下一小时产生50个注册用户以上的概率
> 1-ppois(q = 50,lambda = 40)
[1] 0.05262805
最后再来看下下一个小时注册用户数量超过50的概率。用1减去50个用户的累计概率值就是超过50个注册用户发生的概率,计算结果是0.052,因此下一个小时获得超过50个注册用户的概率不高。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29