
上一篇介绍了数据的分类、统计学是什么、以及统计学知识的大分类,本篇我们重点学习描述性统计学。
我们描述一组数据的时候,通常分三个方面描述:集中趋势、离散趋势、分布形状。通俗来说,集中趋势是描述数据集中在什么位置,离散趋势描述的是数据分散的程度,分布形状描述的是数据形状。
首先,来看描述数据的集中趋势,使用的三个常见的统计量:
Excel求算术平均数的函数=AVERAGE(A1:A8)
PS:聪明的你肯定知道把上面8个数据
2,23,4,17,12,12,13,16
,用左手复制到你Excel中的A1:A8单元格(记得竖着放!)
用Python求算术平均数
## 使用 numpy 库里的 mean 函数
import numpy as np
data = [2,23,4,17,12,12,13,16]
print(np.mean(data))
# 12.375
Excel求几何平均数的函数=GEOMEAN(A1:A8)
用Python求几何平均数
# 使用 scipy 库里的 gmean 函数求几何平均数
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.gmean(data))
# 9.918855683110795
n个数的倒数的算术平均数的倒数
Excel求调和平均数的函数=HARMEAN(A1:A8)
Python求调和平均数
# 使用 scipy 库里的 hmean 函数求调和平均数
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.hmean(data))
# 6.906127821278071
还没看晕吧?我们小结一下,三者的大小排序一般是算术平均值 ≥ 几何平均值 ≥ 调和平均值
。另外
数值类数据的均值一般用算术平均值,比例型数据的均值一般用几何平均值,平均速度一般用调和平均数
中位数是把数据按照顺序排列,处于中间位置的那个数
Excel求中位数的函数=MEDIAN(A1:A8)
Python求中位数
# 使用 numpy 库里的 median 函数求中位数
import numpy as np
data = [2,23,4,17,12,12,13,16]
print(np.median(data))
# 12.5
众数是一组数据中出现次数最多的变量值。
Excel求众数的函数=MODE(A1:A8)
Python求众数
# 使用 scipy 库里的 mode 函数求众数
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.mode(data))
# ModeResult(mode=array([12]), count=array([2]))
以上便是描述数据集中趋势的几个统计量,接下来我们来看描述数据离散趋势的统计量:
四分位数用3个分位数,将数据等分成4个部分。这3个四分位数,分别位于这组数据升序排序后的25%、50%和75%的位置上。另外,75%分位数与25%分位数的差叫做四分位距。
Excel求分位数的函数=QUARTILE(A1:A8,1)
,括号里面的参数:0代表最小值,1代表25%分位数,2代表50%分位数,3代表75%分位数,4代表最大值,
Python求该组数据的下四分位数与上四分位数
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.scoreatpercentile(data,25)) #25分位数
print(sts.scoreatpercentile(data,75)) #75分位数
10.0
16.25
补充一点,关于描述性统计部分的图表可视化,本系列教程不做展开,唯一值得一提的是箱线图,不论是描述数据、还是判断异常都是你应该掌握的数据分析利器(在第8节案例8.2中会详细举例说明)这里先简单举例如下
用四分位数绘制的箱线图
import seaborn as sns
data = [2,23,4,17,12,12,13,16]
# 使用sns.boxplot()函数绘制箱线图
sns.boxplot(data=data)
箱线图可以很直观地看到:数据的最大值、最小值、以及大部分数据集中在什么区间。
具体来说就是:
异常值、上边缘 Q3+1.5(Q3-Q1)
、上四分位数 Q3
、中位数 Q2
下四分位数 Q1
、下边缘 Q1-1.5(Q3-Q1)
极差又称范围误差或全距,是指一组数据中最大值与最小值的差
Excel求极差的函数=MAX(A1:A8) - MIN(A1:A8)
Python 求极差
import numpy as np
data = [2,23,4,17,12,12,13,16]
print(np.ptp(data))
# 21
四分位距是上四分位数与下四分位数之差,一般用表示
Excel求分位数的函数=QUARTILE(A1:A8,3)-QUARTILE(A1:A8,1)
Python 求四分位距
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.scoreatpercentile(data,75)-sts.scoreatpercentile(data,25))
# 6.25
方差是一组数据中的各数据值与该组数据算术平均数之差的平方的算术平均数。
Excel求方差的函数=VAR(A1:A8)
Python求方差
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.tvar(data,ddof = 1))# ddof=1时,分母为n-1;ddof=0时,分母为n
#46.55357142857143
标准差为方差的开方。总体标准差常用σ表示,样本标准差常用S表示。
Excel求方差的函数=STDEV(A1:A8)
Python求标准差:
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.tstd(data,ddof = 1))# ddof=1时,分母为n-1;ddof=0时,分母为n
# 6.823017765517794
对不同变量或不同数组的离散程度进行比较时,如果它们的平均水平和计量单位都相同,才能利用上述指标进行分析,否则需利用变异系数来比较它们的离散程度。
变异系数又称为离散系数,是一组数据中的极差、四分位差或标准差等离散指标与算术平均数的比率。
Excel求变异系数的函数=STDEV(A1:A8)/AVERAGE(A1:A8)
Python求标准差变异系数:
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.tstd(data)/sts.tmean(data))
# 0.5513549709509329
看完了描述数据离散程度的几个统计量,我们接着看描述数据分布形状的偏度和峰度:
偏度系数是对分布偏斜程度的测度,通常用SK表示。偏度衡量随机变量概率分布的不对称性,是相对于平均值不对称程度的度量。
当偏度系数为正值时,表示正偏离差数值较大,可以判断为正偏态或右偏态;反之,当偏度系数为负值时,表示负偏离差数值较大,可以判断为负偏态或左偏态。偏度系数的绝对值越大,表示偏斜的程度就越大。
Excel求偏度的函数=SKEW(A1:A8)
Python如何求偏度:
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.skew(data,bias=False)) # bias=False 代表计算的是总体偏度,bias=True 代表计算的是样本偏度
# -0.21470003988916822
峰度描述的是分布集中趋势高峰的形态,通常与标准正态分布相比较。在归一化到同一方差时,若分布的形状比标准正态分布更“瘦”、更“高”,则称为尖峰分布;若比标准正态分布更“矮”、更“胖”,则称为平峰分布。
峰度系数是对分布峰度的测度,通常用K表示:
由于标准正态分布的峰度系数为0,所以当峰度系数大于0时为尖峰分布,当峰度系数小于0时为平峰分布。
Excel求峰度的函数
=KURT(A1:A8)
Python如何求峰度:
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.kurtosis(data,bias=False)) # bias=False 代表计算的是总体峰度,bias=True 代表计算的是样本峰度
# -0.17282884047242897
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05