
上一篇介绍了数据的分类、统计学是什么、以及统计学知识的大分类,本篇我们重点学习描述性统计学。
我们描述一组数据的时候,通常分三个方面描述:集中趋势、离散趋势、分布形状。通俗来说,集中趋势是描述数据集中在什么位置,离散趋势描述的是数据分散的程度,分布形状描述的是数据形状。
首先,来看描述数据的集中趋势,使用的三个常见的统计量:
Excel求算术平均数的函数=AVERAGE(A1:A8)
PS:聪明的你肯定知道把上面8个数据
2,23,4,17,12,12,13,16
,用左手复制到你Excel中的A1:A8单元格(记得竖着放!)
用Python求算术平均数
## 使用 numpy 库里的 mean 函数
import numpy as np
data = [2,23,4,17,12,12,13,16]
print(np.mean(data))
# 12.375
Excel求几何平均数的函数=GEOMEAN(A1:A8)
用Python求几何平均数
# 使用 scipy 库里的 gmean 函数求几何平均数
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.gmean(data))
# 9.918855683110795
n个数的倒数的算术平均数的倒数
Excel求调和平均数的函数=HARMEAN(A1:A8)
Python求调和平均数
# 使用 scipy 库里的 hmean 函数求调和平均数
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.hmean(data))
# 6.906127821278071
还没看晕吧?我们小结一下,三者的大小排序一般是算术平均值 ≥ 几何平均值 ≥ 调和平均值
。另外
数值类数据的均值一般用算术平均值,比例型数据的均值一般用几何平均值,平均速度一般用调和平均数
中位数是把数据按照顺序排列,处于中间位置的那个数
Excel求中位数的函数=MEDIAN(A1:A8)
Python求中位数
# 使用 numpy 库里的 median 函数求中位数
import numpy as np
data = [2,23,4,17,12,12,13,16]
print(np.median(data))
# 12.5
众数是一组数据中出现次数最多的变量值。
Excel求众数的函数=MODE(A1:A8)
Python求众数
# 使用 scipy 库里的 mode 函数求众数
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.mode(data))
# ModeResult(mode=array([12]), count=array([2]))
以上便是描述数据集中趋势的几个统计量,接下来我们来看描述数据离散趋势的统计量:
四分位数用3个分位数,将数据等分成4个部分。这3个四分位数,分别位于这组数据升序排序后的25%、50%和75%的位置上。另外,75%分位数与25%分位数的差叫做四分位距。
Excel求分位数的函数=QUARTILE(A1:A8,1)
,括号里面的参数:0代表最小值,1代表25%分位数,2代表50%分位数,3代表75%分位数,4代表最大值,
Python求该组数据的下四分位数与上四分位数
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.scoreatpercentile(data,25)) #25分位数
print(sts.scoreatpercentile(data,75)) #75分位数
10.0
16.25
补充一点,关于描述性统计部分的图表可视化,本系列教程不做展开,唯一值得一提的是箱线图,不论是描述数据、还是判断异常都是你应该掌握的数据分析利器(在第8节案例8.2中会详细举例说明)这里先简单举例如下
用四分位数绘制的箱线图
import seaborn as sns
data = [2,23,4,17,12,12,13,16]
# 使用sns.boxplot()函数绘制箱线图
sns.boxplot(data=data)
箱线图可以很直观地看到:数据的最大值、最小值、以及大部分数据集中在什么区间。
具体来说就是:
异常值、上边缘 Q3+1.5(Q3-Q1)
、上四分位数 Q3
、中位数 Q2
下四分位数 Q1
、下边缘 Q1-1.5(Q3-Q1)
极差又称范围误差或全距,是指一组数据中最大值与最小值的差
Excel求极差的函数=MAX(A1:A8) - MIN(A1:A8)
Python 求极差
import numpy as np
data = [2,23,4,17,12,12,13,16]
print(np.ptp(data))
# 21
四分位距是上四分位数与下四分位数之差,一般用表示
Excel求分位数的函数=QUARTILE(A1:A8,3)-QUARTILE(A1:A8,1)
Python 求四分位距
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.scoreatpercentile(data,75)-sts.scoreatpercentile(data,25))
# 6.25
方差是一组数据中的各数据值与该组数据算术平均数之差的平方的算术平均数。
Excel求方差的函数=VAR(A1:A8)
Python求方差
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.tvar(data,ddof = 1))# ddof=1时,分母为n-1;ddof=0时,分母为n
#46.55357142857143
标准差为方差的开方。总体标准差常用σ表示,样本标准差常用S表示。
Excel求方差的函数=STDEV(A1:A8)
Python求标准差:
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.tstd(data,ddof = 1))# ddof=1时,分母为n-1;ddof=0时,分母为n
# 6.823017765517794
对不同变量或不同数组的离散程度进行比较时,如果它们的平均水平和计量单位都相同,才能利用上述指标进行分析,否则需利用变异系数来比较它们的离散程度。
变异系数又称为离散系数,是一组数据中的极差、四分位差或标准差等离散指标与算术平均数的比率。
Excel求变异系数的函数=STDEV(A1:A8)/AVERAGE(A1:A8)
Python求标准差变异系数:
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.tstd(data)/sts.tmean(data))
# 0.5513549709509329
看完了描述数据离散程度的几个统计量,我们接着看描述数据分布形状的偏度和峰度:
偏度系数是对分布偏斜程度的测度,通常用SK表示。偏度衡量随机变量概率分布的不对称性,是相对于平均值不对称程度的度量。
当偏度系数为正值时,表示正偏离差数值较大,可以判断为正偏态或右偏态;反之,当偏度系数为负值时,表示负偏离差数值较大,可以判断为负偏态或左偏态。偏度系数的绝对值越大,表示偏斜的程度就越大。
Excel求偏度的函数=SKEW(A1:A8)
Python如何求偏度:
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.skew(data,bias=False)) # bias=False 代表计算的是总体偏度,bias=True 代表计算的是样本偏度
# -0.21470003988916822
峰度描述的是分布集中趋势高峰的形态,通常与标准正态分布相比较。在归一化到同一方差时,若分布的形状比标准正态分布更“瘦”、更“高”,则称为尖峰分布;若比标准正态分布更“矮”、更“胖”,则称为平峰分布。
峰度系数是对分布峰度的测度,通常用K表示:
由于标准正态分布的峰度系数为0,所以当峰度系数大于0时为尖峰分布,当峰度系数小于0时为平峰分布。
Excel求峰度的函数
=KURT(A1:A8)
Python如何求峰度:
from scipy import stats as sts
data = [2,23,4,17,12,12,13,16]
print(sts.kurtosis(data,bias=False)) # bias=False 代表计算的是总体峰度,bias=True 代表计算的是样本峰度
# -0.17282884047242897
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20