import pandas as pd
d = np.array([[81, 28, 24, 25, 96],
[ 8, 35, 56, 98, 39],
[13, 39, 55, 36, 3],
[70, 54, 69, 48, 12],
[63, 80, 97, 25, 70]])
df = pd.DataFrame(data = d,
columns=list('abcde'))
df
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
1 | 8 | 35 | 56 | 98 | 39 |
2 | 13 | 39 | 55 | 36 | 3 |
3 | 70 | 54 | 69 | 48 | 12 |
4 | 63 | 80 | 97 | 25 | 70 |
聚合计算是指对数据进行汇总和统计的操作。常用的聚合计算方法包括计算均值、求和、最大值、最小值、计数等。
df['a'].mean()
47.0
df['a'].sum()
235
df['a'].max()
81
df['a'].min()
8
df['a'].count()
5
df['a'].median() # 中位数
63.0
df['a'].var() #方差
1154.5
df['a'].skew() # 偏度
-0.45733193928530436
df['a'].kurt() # 峰度
-2.9999915595685325
df['a'].cumsum() # 累计求和
0 81
1 89
2 102
3 172
4 235
Name: a, dtype: int64
df['a'].cumprod() # 累计求积
0 81
1 648
2 8424
3 589680
4 37149840
Name: a, dtype: int64
df['a'].diff() # 差分
0 NaN
1 -73.0
2 5.0
3 57.0
4 -7.0
Name: a, dtype: float64
df['a'].mad() # 平均绝对偏差
29.2
df.sum(axis=0) # 按列求和汇总到最后一行
a 235
b 236
c 301
d 232
e 220
dtype: int64
df.sum(axis=1) # 按行求和汇总到最后一列
0 254
1 236
2 146
3 253
4 335
dtype: int64
df.describe() # 描述性统计
a | b | c | d | e | |
---|---|---|---|---|---|
count | 5.000000 | 5.000000 | 5.000000 | 5.000000 | 5.000000 |
mean | 47.000000 | 47.200000 | 60.200000 | 46.400000 | 44.000000 |
std | 33.977934 | 20.656718 | 26.395075 | 30.369392 | 39.083244 |
min | 8.000000 | 28.000000 | 24.000000 | 25.000000 | 3.000000 |
25% | 13.000000 | 35.000000 | 55.000000 | 25.000000 | 12.000000 |
50% | 63.000000 | 39.000000 | 56.000000 | 36.000000 | 39.000000 |
75% | 70.000000 | 54.000000 | 69.000000 | 48.000000 | 70.000000 |
max | 81.000000 | 80.000000 | 97.000000 | 98.000000 | 96.000000 |
对整个DataFrame批量使用多个聚合函数
df.agg(['sum', 'mean','max','min','median'])
a | b | c | d | e | |
---|---|---|---|---|---|
sum | 235.0 | 236.0 | 301.0 | 232.0 | 220.0 |
mean | 47.0 | 47.2 | 60.2 | 46.4 | 44.0 |
max | 81.0 | 80.0 | 97.0 | 98.0 | 96.0 |
min | 8.0 | 28.0 | 24.0 | 25.0 | 3.0 |
median | 63.0 | 39.0 | 56.0 | 36.0 | 39.0 |
对DataFramed的某些列应用不同的聚合函数
df.agg({'a':['max','min'],'b':['sum','mean'],'c':['median']})
a | b | c | |
---|---|---|---|
max | 81.0 | NaN | NaN |
min | 8.0 | NaN | NaN |
sum | NaN | 236.0 | NaN |
mean | NaN | 47.2 | NaN |
median | NaN | NaN | 56.0 |
注意其中applymap函数在新版已经被弃用,这里的案例是基于pandas=1.3.2写的
在Python中如果想要对数据使用函数,可以借助apply(),applymap(),map()对数据进行转换,括号里面可以是直接函数式,或者自定义函数(def)或者匿名函数(lambda)
1、当我们要对数据框(DataFrame)的数据进行按行或按列操作时用apply()
df.apply(lambda x :x.max()-x.min(),axis=1)
#axis=1,表示按行对数据进行操作
#从下面的结果可以看出,我们使用了apply函数之后,系统自动按行找最大值和最小值计算,每一行输出一个值
0 72
1 90
2 52
3 58
4 72
dtype: int64
df.apply(lambda x :x.max()-x.min(),axis=0)
#默认参数axis=0,表示按列对数据进行操作
#从下面的结果可以看出,我们使用了apply函数之后,系统自动按列找最大值和最小值计算,每一列输出一个值
a 73
b 52
c 73
d 73
e 93
dtype: int64
2、当我们要对数据框(DataFrame)的每一个数据进行操作时用applymap(),返回结果是DataFrame格式
df.applymap(lambda x : 1 if x>60 else 0)
#从下面的结果可以看出,我们使用了applymap函数之后,
#系统自动对每一个数据进行判断,判断之后输出结果
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 0 | 1 | 0 | 0 |
4 | 1 | 1 | 1 | 0 | 1 |
3、当我们要对Series的每一个数据进行操作时用map()
df['a'].map(lambda x : 1 if x>60 else 0)
0 1
1 0
2 0
3 1
4 1
Name: a, dtype: int64
总结:
apply()
函数可以在DataFrame或Series上应用自定义函数,可以在行或列上进行操作。
applymap()
函数只适用于DataFrame,可以在每个元素上应用自定义函数。
map()
函数只适用于Series,用于将每个元素映射到另一个值。
以上是数学运算部分,包括聚合计算、批量应用聚合函数,以及对Series和DataFrame进行批量映射,接下来我们来看如何对数据进行合并拼接
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21