import pandas as pd
d = np.array([[81, 28, 24, 25, 96],
[ 8, 35, 56, 98, 39],
[13, 39, 55, 36, 3],
[70, 54, 69, 48, 12],
[63, 80, 97, 25, 70]])
df = pd.DataFrame(data = d,
columns=list('abcde'))
df
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 81 | 28 | 24 | 25 | 96 |
1 | 8 | 35 | 56 | 98 | 39 |
2 | 13 | 39 | 55 | 36 | 3 |
3 | 70 | 54 | 69 | 48 | 12 |
4 | 63 | 80 | 97 | 25 | 70 |
聚合计算是指对数据进行汇总和统计的操作。常用的聚合计算方法包括计算均值、求和、最大值、最小值、计数等。
df['a'].mean()
47.0
df['a'].sum()
235
df['a'].max()
81
df['a'].min()
8
df['a'].count()
5
df['a'].median() # 中位数
63.0
df['a'].var() #方差
1154.5
df['a'].skew() # 偏度
-0.45733193928530436
df['a'].kurt() # 峰度
-2.9999915595685325
df['a'].cumsum() # 累计求和
0 81
1 89
2 102
3 172
4 235
Name: a, dtype: int64
df['a'].cumprod() # 累计求积
0 81
1 648
2 8424
3 589680
4 37149840
Name: a, dtype: int64
df['a'].diff() # 差分
0 NaN
1 -73.0
2 5.0
3 57.0
4 -7.0
Name: a, dtype: float64
df['a'].mad() # 平均绝对偏差
29.2
df.sum(axis=0) # 按列求和汇总到最后一行
a 235
b 236
c 301
d 232
e 220
dtype: int64
df.sum(axis=1) # 按行求和汇总到最后一列
0 254
1 236
2 146
3 253
4 335
dtype: int64
df.describe() # 描述性统计
a | b | c | d | e | |
---|---|---|---|---|---|
count | 5.000000 | 5.000000 | 5.000000 | 5.000000 | 5.000000 |
mean | 47.000000 | 47.200000 | 60.200000 | 46.400000 | 44.000000 |
std | 33.977934 | 20.656718 | 26.395075 | 30.369392 | 39.083244 |
min | 8.000000 | 28.000000 | 24.000000 | 25.000000 | 3.000000 |
25% | 13.000000 | 35.000000 | 55.000000 | 25.000000 | 12.000000 |
50% | 63.000000 | 39.000000 | 56.000000 | 36.000000 | 39.000000 |
75% | 70.000000 | 54.000000 | 69.000000 | 48.000000 | 70.000000 |
max | 81.000000 | 80.000000 | 97.000000 | 98.000000 | 96.000000 |
对整个DataFrame批量使用多个聚合函数
df.agg(['sum', 'mean','max','min','median'])
a | b | c | d | e | |
---|---|---|---|---|---|
sum | 235.0 | 236.0 | 301.0 | 232.0 | 220.0 |
mean | 47.0 | 47.2 | 60.2 | 46.4 | 44.0 |
max | 81.0 | 80.0 | 97.0 | 98.0 | 96.0 |
min | 8.0 | 28.0 | 24.0 | 25.0 | 3.0 |
median | 63.0 | 39.0 | 56.0 | 36.0 | 39.0 |
对DataFramed的某些列应用不同的聚合函数
df.agg({'a':['max','min'],'b':['sum','mean'],'c':['median']})
a | b | c | |
---|---|---|---|
max | 81.0 | NaN | NaN |
min | 8.0 | NaN | NaN |
sum | NaN | 236.0 | NaN |
mean | NaN | 47.2 | NaN |
median | NaN | NaN | 56.0 |
注意其中applymap函数在新版已经被弃用,这里的案例是基于pandas=1.3.2写的
在Python中如果想要对数据使用函数,可以借助apply(),applymap(),map()对数据进行转换,括号里面可以是直接函数式,或者自定义函数(def)或者匿名函数(lambda)
1、当我们要对数据框(DataFrame)的数据进行按行或按列操作时用apply()
df.apply(lambda x :x.max()-x.min(),axis=1)
#axis=1,表示按行对数据进行操作
#从下面的结果可以看出,我们使用了apply函数之后,系统自动按行找最大值和最小值计算,每一行输出一个值
0 72
1 90
2 52
3 58
4 72
dtype: int64
df.apply(lambda x :x.max()-x.min(),axis=0)
#默认参数axis=0,表示按列对数据进行操作
#从下面的结果可以看出,我们使用了apply函数之后,系统自动按列找最大值和最小值计算,每一列输出一个值
a 73
b 52
c 73
d 73
e 93
dtype: int64
2、当我们要对数据框(DataFrame)的每一个数据进行操作时用applymap(),返回结果是DataFrame格式
df.applymap(lambda x : 1 if x>60 else 0)
#从下面的结果可以看出,我们使用了applymap函数之后,
#系统自动对每一个数据进行判断,判断之后输出结果
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 0 | 1 | 0 | 0 |
4 | 1 | 1 | 1 | 0 | 1 |
3、当我们要对Series的每一个数据进行操作时用map()
df['a'].map(lambda x : 1 if x>60 else 0)
0 1
1 0
2 0
3 1
4 1
Name: a, dtype: int64
总结:
apply()
函数可以在DataFrame或Series上应用自定义函数,可以在行或列上进行操作。
applymap()
函数只适用于DataFrame,可以在每个元素上应用自定义函数。
map()
函数只适用于Series,用于将每个元素映射到另一个值。
以上是数学运算部分,包括聚合计算、批量应用聚合函数,以及对Series和DataFrame进行批量映射,接下来我们来看如何对数据进行合并拼接
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-25在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-25以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-25“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-25在数据分析中,地图是一种非常直观的可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。无论是展示销售数据、人口 ...
2025-02-25春风拂面,金三银四的求职季如期而至。谁都想在这场竞争里拿下心仪offer。 一份亮眼简历是求职敲门砖,面试紧张则可能让机会溜 ...
2025-02-24