
在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()
、concat()
、merge()
。
append()函数用于将一个DataFrame或Series对象追加到另一个DataFrame中。
import pandas as pd
df1 = pd.DataFrame({'A': ['a', 'b'],
'B': [1, 2]})
df1
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
A | B | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
df1.append(df2,ignore_index=True)
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
2 | b | 2 |
3 | c | 3 |
4 | d | 4 |
concat()函数用于沿指定轴将多个对象(比如Series、DataFrame)堆叠在一起。可以沿行或列方向进行拼接。
先看一个上下堆叠的例子
df1 = pd.DataFrame({'A': ['a', 'b'],
'B': [1, 2]})
df1
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
A | B | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
pd.concat([df1,df2],axis =0) # 上下拼接
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
再看一个左右堆叠的例子
df1 = pd.DataFrame({'A': ['a', 'b']})
df1
A | |
---|---|
0 | a |
1 | b |
df2 = pd.DataFrame({'B': [1, 2],
'C': [2, 4]})
df2
B | C | |
---|---|---|
0 | 1 | 2 |
1 | 2 | 4 |
pd.concat([df1,df2],axis =1) # 左右拼接
A | B | C | |
---|---|---|---|
0 | a | 1 | 2 |
1 | b | 2 | 4 |
merge()
函数用于根据一个或多个键将两个DataFrame的行连接起来。类似于SQL中的JOIN操作。
先看一下 inner
和 outer
连接
df1 = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})
df1
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
2 | c | 3 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
A | B | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
pd.merge(df1,df2,how = 'inner')
A | B | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
pd.merge(df1,df2,how = 'outer')
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
2 | c | 3 |
3 | d | 4 |
再看左右链接的例子:
df1 = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})
df1
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
2 | c | 3 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'C': [2, 3, 4]})
df2
A | C | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
pd.merge(df1,df2,how = 'left',on = "A") # 左连接
A | B | C | |
---|---|---|---|
0 | a | 1 | NaN |
1 | b | 2 | 2.0 |
2 | c | 3 | 3.0 |
pd.merge(df1,df2,how = 'right',on = "A") # 右连接
A | B | C | |
---|---|---|---|
0 | b | 2.0 | 2 |
1 | c | 3.0 | 3 |
2 | d | NaN | 4 |
pd.merge(df1,df2,how = 'inner',on = "A") # 内连接
A | B | C | |
---|---|---|---|
0 | b | 2 | 2 |
1 | c | 3 | 3 |
pd.merge(df1,df2,how = 'outer',on = "A") # 外连接
A | B | C | |
---|---|---|---|
0 | a | 1.0 | NaN |
1 | b | 2.0 | 2.0 |
2 | c | 3.0 | 3.0 |
3 | d | NaN | 4.0 |
补充1个小技巧
df1[df1['A'].isin(df2['A'])] # 返回在df1中列'A'的值在df2中也存在的行
A | B | |
---|---|---|
1 | b | 2 |
2 | c | 3 |
df1[~df1['A'].isin(df2['A'])] # 返回在df1中列'A'的值在df2中不存在的行
A | B | |
---|---|---|
0 | a | 1 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26