京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、concat()、merge()。
append()函数用于将一个DataFrame或Series对象追加到另一个DataFrame中。
import pandas as pd
df1 = pd.DataFrame({'A': ['a', 'b'],
'B': [1, 2]})
df1
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
| A | B | |
|---|---|---|
| 0 | b | 2 |
| 1 | c | 3 |
| 2 | d | 4 |
df1.append(df2,ignore_index=True)
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
| 2 | b | 2 |
| 3 | c | 3 |
| 4 | d | 4 |
concat()函数用于沿指定轴将多个对象(比如Series、DataFrame)堆叠在一起。可以沿行或列方向进行拼接。
先看一个上下堆叠的例子
df1 = pd.DataFrame({'A': ['a', 'b'],
'B': [1, 2]})
df1
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
| A | B | |
|---|---|---|
| 0 | b | 2 |
| 1 | c | 3 |
| 2 | d | 4 |
pd.concat([df1,df2],axis =0) # 上下拼接
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
| 0 | b | 2 |
| 1 | c | 3 |
| 2 | d | 4 |
再看一个左右堆叠的例子
df1 = pd.DataFrame({'A': ['a', 'b']})
df1
| A | |
|---|---|
| 0 | a |
| 1 | b |
df2 = pd.DataFrame({'B': [1, 2],
'C': [2, 4]})
df2
| B | C | |
|---|---|---|
| 0 | 1 | 2 |
| 1 | 2 | 4 |
pd.concat([df1,df2],axis =1) # 左右拼接
| A | B | C | |
|---|---|---|---|
| 0 | a | 1 | 2 |
| 1 | b | 2 | 4 |
merge()函数用于根据一个或多个键将两个DataFrame的行连接起来。类似于SQL中的JOIN操作。

先看一下 inner 和 outer连接
df1 = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})
df1
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
| 2 | c | 3 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
| A | B | |
|---|---|---|
| 0 | b | 2 |
| 1 | c | 3 |
| 2 | d | 4 |
pd.merge(df1,df2,how = 'inner')
| A | B | |
|---|---|---|
| 0 | b | 2 |
| 1 | c | 3 |
pd.merge(df1,df2,how = 'outer')
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
| 2 | c | 3 |
| 3 | d | 4 |
再看左右链接的例子:
df1 = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})
df1
| A | B | |
|---|---|---|
| 0 | a | 1 |
| 1 | b | 2 |
| 2 | c | 3 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'C': [2, 3, 4]})
df2
| A | C | |
|---|---|---|
| 0 | b | 2 |
| 1 | c | 3 |
| 2 | d | 4 |
pd.merge(df1,df2,how = 'left',on = "A") # 左连接
| A | B | C | |
|---|---|---|---|
| 0 | a | 1 | NaN |
| 1 | b | 2 | 2.0 |
| 2 | c | 3 | 3.0 |
pd.merge(df1,df2,how = 'right',on = "A") # 右连接
| A | B | C | |
|---|---|---|---|
| 0 | b | 2.0 | 2 |
| 1 | c | 3.0 | 3 |
| 2 | d | NaN | 4 |
pd.merge(df1,df2,how = 'inner',on = "A") # 内连接
| A | B | C | |
|---|---|---|---|
| 0 | b | 2 | 2 |
| 1 | c | 3 | 3 |
pd.merge(df1,df2,how = 'outer',on = "A") # 外连接
| A | B | C | |
|---|---|---|---|
| 0 | a | 1.0 | NaN |
| 1 | b | 2.0 | 2.0 |
| 2 | c | 3.0 | 3.0 |
| 3 | d | NaN | 4.0 |
补充1个小技巧
df1[df1['A'].isin(df2['A'])] # 返回在df1中列'A'的值在df2中也存在的行
| A | B | |
|---|---|---|
| 1 | b | 2 |
| 2 | c | 3 |
df1[~df1['A'].isin(df2['A'])] # 返回在df1中列'A'的值在df2中不存在的行
| A | B | |
|---|---|---|
| 0 | a | 1 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16