在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()
、concat()
、merge()
。
append()函数用于将一个DataFrame或Series对象追加到另一个DataFrame中。
import pandas as pd
df1 = pd.DataFrame({'A': ['a', 'b'],
'B': [1, 2]})
df1
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
A | B | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
df1.append(df2,ignore_index=True)
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
2 | b | 2 |
3 | c | 3 |
4 | d | 4 |
concat()函数用于沿指定轴将多个对象(比如Series、DataFrame)堆叠在一起。可以沿行或列方向进行拼接。 先看一个上下堆叠的例子
df1 = pd.DataFrame({'A': ['a', 'b'],
'B': [1, 2]})
df1
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
A | B | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
pd.concat([df1,df2],axis =0) # 上下拼接
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
再看一个左右堆叠的例子
df1 = pd.DataFrame({'A': ['a', 'b']})
df1
A | |
---|---|
0 | a |
1 | b |
df2 = pd.DataFrame({'B': [1, 2],
'C': [2, 4]})
df2
B | C | |
---|---|---|
0 | 1 | 2 |
1 | 2 | 4 |
pd.concat([df1,df2],axis =1) # 左右拼接
A | B | C | |
---|---|---|---|
0 | a | 1 | 2 |
1 | b | 2 | 4 |
merge()
函数用于根据一个或多个键将两个DataFrame的行连接起来。类似于SQL中的JOIN操作。
先看一下 inner
和 outer
连接
df1 = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})
df1
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
2 | c | 3 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'B': [2, 3, 4]})
df2
A | B | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
pd.merge(df1,df2,how = 'inner')
A | B | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
pd.merge(df1,df2,how = 'outer')
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
2 | c | 3 |
3 | d | 4 |
再看左右链接的例子:
df1 = pd.DataFrame({'A': ['a', 'b', 'c'],
'B': [1, 2, 3]})
df1
A | B | |
---|---|---|
0 | a | 1 |
1 | b | 2 |
2 | c | 3 |
df2 = pd.DataFrame({'A': [ 'b', 'c','d'],
'C': [2, 3, 4]})
df2
A | C | |
---|---|---|
0 | b | 2 |
1 | c | 3 |
2 | d | 4 |
pd.merge(df1,df2,how = 'left',on = "A") # 左连接
A | B | C | |
---|---|---|---|
0 | a | 1 | NaN |
1 | b | 2 | 2.0 |
2 | c | 3 | 3.0 |
pd.merge(df1,df2,how = 'right',on = "A") # 右连接
A | B | C | |
---|---|---|---|
0 | b | 2.0 | 2 |
1 | c | 3.0 | 3 |
2 | d | NaN | 4 |
pd.merge(df1,df2,how = 'inner',on = "A") # 内连接
A | B | C | |
---|---|---|---|
0 | b | 2 | 2 |
1 | c | 3 | 3 |
pd.merge(df1,df2,how = 'outer',on = "A") # 外连接
A | B | C | |
---|---|---|---|
0 | a | 1.0 | NaN |
1 | b | 2.0 | 2.0 |
2 | c | 3.0 | 3.0 |
3 | d | NaN | 4.0 |
补充1个小技巧
df1[df1['A'].isin(df2['A'])] # 返回在df1中列'A'的值在df2中也存在的行
A | B | |
---|---|---|
1 | b | 2 |
2 | c | 3 |
df1[~df1['A'].isin(df2['A'])] # 返回在df1中列'A'的值在df2中不存在的行
A | B | |
---|---|---|
0 | a | 1 |
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21