一文了解什么是大数据风控
要了解什么是大数据风控,需要分解两个词汇,什么是大数据,什么是风控。
对于“大数据”麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
风险控制是指风险管理者采取各种措施和方法,消灭或减少风险事件发生的各种可能性,或风险控制者减少风险事件发生时造成的损失。风险控制的四种基本方法是:风险回避、损失控制、风险转移和风险保留。
大数据风控即大数据风险控制,是指通过运用大数据构建模型的方法对借款人进行风险控制和风险提示。
以上可知,大数据构建模型是大数据风控的关键,大数据风控的核心竞争力在于大数据模型的有效性。
目前大数据风控主要分为三类:反欺诈模型,二元好坏模型和资产包风控模型。
大数据风控只能用于小微资产(现金贷、消费贷、小微企业贷),而不可能用于基建、政信。对于小微资产,还款能力不是核心问题,主要风险是还款意愿。因此目前市面上大数据风控90%的价值在于反欺诈。
本文仅以反欺诈模型为例,反欺诈的大数据风控主要基于两套工具:交叉验证、聚类分析。
交叉验证主要由人工判断规则,系统检验是否符合实际情况。如通讯录和通话记录校验、电商记录校验、设备指纹校验、多信息源地理位置校验。
聚类分析和交叉验证的区别是,交叉验证很多时候根据一些人工的规则,但是聚类分析主要是根据结果反向推导。比如通过历史资产的履约情况,发现在25—30岁区间的人群风险较低,发现输入地址时间比较长的人群风险较高,发现填写收入在20000以上的风险比2000以下还高。有的规则最后可以通过逻辑解释,有的规则最后根本也无法理解为什么。但是如果一个新的进件和之前的坏客户比较相似,那么他大概率是坏客户。
大数据风控,是互联网金融乃至传统金融的必然趋势,它的发展将会给金融领域带来巨大福音,使用大数据进行风控已成为美国等发达国家互联网金融企业的标准配置。基于大数据的风控模型正在成为互联网金融领域一个热门的战场,这是因为业内普遍认为,谁在这个领域实现突破,谁将制胜下一步互联网金融市场。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20