大数据如何帮助银行评估借贷信用
如果把国民经济比作人类肌体,货币即是血液。如何让“血液”适量、适时、适度地流到需要的领域,时刻考验着金融机构的资本管理能力,尤其是对金融业总资产占比合计80%以上的国有商业银行、股份制商业银行、城商行、农商行而言,自身健康发展对国民经济的重要性不言而喻。
然而,银行是经营风险的行业,与生俱来的行业属性决定了银行业始终要与风险为伍。银监会主席尚福林曾坦言,信用风险始终是银行业面临的主要风险。值得警惕的是,借贷信用判断不当,会直接将银行引向流动性风险。
——一改传统信用评估模式
为什么信用风险在银行业内难以做到可控?传统上,银行对借贷客户信用能力的判断,依赖其资产负债情况、以往的信用记录、抵押担保等信息,搜集的有效信息来源不全面;同时,由于采集的信息存在滞后性,并不是实时动态信息,所以难以及时捕捉风险;过于依赖信贷审批人员的主观判断,易造成风险评估的失准;贷后风险管控存在难度,难以避免逾期催收。如果能够有每一个企业动态、完整的画像,将可以解决这一难题。
大数据可以为企业进行完整画像,极好地帮助银行完成贷前调查和贷后风险管控。大数据系统实时、动态地获知贷款企业的行政处罚、工商处罚、税务处罚、环保处罚、海关处罚、法院诉讼等信息,一旦发现负面潜在风险,系统即自动预警。
——控制征信风险高发区
一直以来,小微企业是征信风险的高发地,使小微企业贷款风险可控,将解决银行业的一大痛点问题。小微企业融资难问题主要在于银行对于小微企业的信息把控不准确,或者说信息不对称。大数据的参与帮助商业银行更好地评估小微企业的还款能力,推动良性信贷增长,改善了商业银行的信贷结构,进而引导货币流向更有生命力的产业。
在“大众创业,万众创新”的浪潮下,势必会诞生更多的小微企业。通过数据采集、数据分析、数据建模,为每一个小微企业作出精准画像,进行有效评估。
无论是大型企业还是小微企业,其征信都将通过大数据来整体衡量。大数据通过挖掘企业运营、财务数据等信息实现了对企业的信用评级,在此基础上,对多头贷款、关联担保等进行分析,针对有经营异象的企业进行信用预警。
可以说,银行业正在经历一场前所未有的数据化、信息化革命转型,正在将数据作为判断市场、精准营销、发现价格、评估风险、配置资源的重要依据,从而将形成新的金融生态。
——银行如何有效利用大数据
尽管当前大数据的大量涌现,但就当前银行形势而言,如何在大数据时代利用好大数据是银行业需要认真研究的课题:
(一)如何获取大数据。虽然银行业本身拥有大量的客户数据和交易数据,但是随着人们生活日益网络化、移动化以及金融非中介化现象日益突出,银行业所拥有的数据越来越有限,银行业需打破现有界限,收集广泛游离于银行之外的数据。
(二)如何挖掘、分析大数据。在原有数据时代,银行业已经在数据分析应用方面积累了大量的实战经验,但是这些数据大多是结构化的,而广泛存在于社交网络、物联网、电商平台等媒介的数据更多的是非结构化和半结构化数据,银行需要采用复杂的方法从这些海量碎片化的数据进行取舍获得有价值的数据信息。获取、利用大数据的能力将成为决定银行竞争力的关键因素。
——银行业应对大数据时代的策略建议
尽管当前的大数据时代,银行业相对处于落后态势,但银行业仍需应充分认识大数据的颠覆性影响,积极发力,尽早布局。
(一)拓宽客户数据来源渠道
银行业要打破现有客户数据源的边界,应更加注重电商平台、社交网络等新型数据来源,拓宽渠道获取尽可能多的客户信息,并从这些数据中挖掘出更多的价值。首先需积极建立自已的社交平台如微博、微信、博客等,并将其努力打造成与电话客服并行的重要服务渠道。拓宽与客户互动渠道,充分利用社交网络的作用,既有助于宣传业务、树立良好的品牌形象,又可以从同客户的互动中,了解对客户的真正需求,获得完善和创新产品、服务的新方法、新思路。二是建立与第三方大数据平台合作模式,将银行内部数据和第三方数据互联,获得更加完整的客户视图,从而进行更为高效的客户关系管理和业务精准营销。大数据时代,复杂的大数据注定难以被某一家企业、机构独自掌控,任何想独自霸占大数据的想法和行为都不太可能实现,企业之间的合作共赢是时代的潮流。银行可与电信、电商等第三方大数据平台开展合作,进行数据和信息的共享和利用,全面整合客户信息。当然,在合作过程中如何保护客户信息安全是是值得深入研究的课题。三是积极搭建自己的大数据平台,逐步积累客户数据,将核心话语权牢牢掌握在自己的手中。
(二)不断提高数据挖掘、分析能力
构建银行强大的“大数据”处理能力,应该是两条腿走路:一方面,要与数据分析的专业厂商加强合作,利用专业厂商的先进技术,对银行已经存在的“大数据”进行综合处理与分析。另一方面,要加大建立和培养银行自己的大数据分析人才队伍。对大数据进行处理,需要分析人员具有更高的素质,不仅要有较高的业务理解力,而且要有很强的数据建模、数据挖掘的技术能力。因此要下大力气推进大数据人才的梯队建设,逐步打造培养专业、高效、灵活的大数据分析团队,不断提升银行处理、分析数据的能力,挖掘海量数据的商业价值,从而在数据的浪潮中逐步建立有利地位。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17