Python控制多进程与多线程并发数总结
一、前言
本来写了脚本用于暴力破解密码,可是1秒钟尝试一个密码2220000个密码我的天,想用多线程可是只会一个for全开,难道开2220000个线程吗?只好学习控制线程数了,官方文档不好看,觉得结构不够清晰,网上找很多文章也都不很清晰,只有for全开线程,没有控制线程数的具体说明,最终终于根据多篇文章和官方文档算是搞明白基础的多线程怎么实现法了,怕长时间不用又忘记,找着麻烦就贴这了,跟我一样新手也可以参照参照。
先说进程和线程的区别:
地址空间:进程内的一个执行单元;进程至少有一个线程;它们共享进程的地址空间;而进程有自己独立的地址空间;
资源拥有:进程是资源分配和拥有的单位,同一个进程内的线程共享进程的资源
线程是处理器调度的基本单位,但进程不是.
二者均可并发执行.
不能理解的话简单打比方就是一个进程就像一个程序一样,并发互不干扰。一个进程靠一个或多个线程执行处理,并发的线程是cpu在不停的来回切换执行,当然是快到你感觉不出的。
拿上面我遇到的困难来说吧,大量的数据需要执行相同的处理,一个操作中间可能会有一些等待时间,一个一个执行浪费大量时间,那么就同时执行吧,我们可以用两种并行办法:
进程并行或者线程并行
各有优缺点,要看情况,不是绝对的,在此不讨论这个,这引出下面两种Python并行处理方法(注释感觉很清晰详细了,不再多说)
二、进程处理方法
#coding:utf-8
import random
from time import sleep
import sys
import multiprocessing
import os
#
#需求分析:有大批量数据需要执行,而且是重复一个函数操作(例如爆破密码),如果全部开始线程数N多,这里控制住线程数m个并行执行,其他等待
#
lock=multiprocessing.Lock()#一个锁
def a(x):#模拟需要重复执行的函数
lock.acquire()#输出时候上锁,否则进程同时输出时候会混乱,不可读
print '开始进程:',os.getpid(),'模拟进程时间:',x
lock.release()
sleep(x)#模拟执行操作
lock.acquire()
print '结束进程:',os.getpid(),'预测下一个进程启动会使用该进程号'
lock.release()
list=[]
for i in range(10):#产生一个随机数数组,模拟每次调用函数需要的输入,这里模拟总共有10组需要处理
list.append(random.randint(1,10))
pool=multiprocessing.Pool(processes=3)#限制并行进程数为3
pool.map(a,list)#创建进程池,调用函数a,传入参数为list,此参数必须是一个可迭代对象,因为map是在迭代创建每个进程
输出:
三、线程处理方法:
#coding:utf-8
import threading
import random
import Queue
from time import sleep
import sys
#
#需求分析:有大批量数据需要执行,而且是重复一个函数操作(例如爆破密码),如果全部开始线程数N多,这里控制住线程数m个并行执行,其他等待
#
#继承一个Thread类,在run方法中进行需要重复的单个函数操作
class Test(threading.Thread):
def __init__(self,queue,lock,num):
#传递一个队列queue和线程锁,并行数
threading.Thread.__init__(self)
self.queue=queue
self.lock=lock
self.num=num
def run(self):
#while True:#不使用threading.Semaphore,直接开始所有线程,程序执行完毕线程都还不死,最后的print threading.enumerate()可以看出
with self.num:#同时并行指定的线程数量,执行完毕一个则死掉一个线程
#以下为需要重复的单次函数操作
n=self.queue.get()#等待队列进入
lock.acquire()#锁住线程,防止同时输出造成混乱
print '开始一个线程:',self.name,'模拟的执行时间:',n
print '队列剩余:',queue.qsize()
print threading.enumerate()
lock.release()
sleep(n)#执行单次操作,这里sleep模拟执行过程
self.queue.task_done()#发出此队列完成信号
threads=[]
queue=Queue.Queue()
lock=threading.Lock()
num=threading.Semaphore(3)#设置同时执行的线程数为3,其他等待执行
#启动所有线程
for i in range(10):#总共需要执行的次数
t=Test(queue,lock,num)
t.start()
threads.append(t)
#吧队列传入线程,是run结束等待开始执行,放下面单独一个for也行,这里少个循环吧
n=random.randint(1,10)
queue.put(n)#模拟执行函数的逐个不同输入
#吧队列传入线程,是run结束等待开始执行
#for t in threads:
# n=random.randint(1,10)
# queue.put(n)
#等待线程执行完毕
for t in threads:
t.join()
queue.join()#等待队列执行完毕才继续执行,否则下面语句会在线程未接受就开始执行
print '所有执行完毕'
print threading.active_count()
print threading.enumerate()
输出:
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06