硅谷资深数据科学家教你认清探索性数据分析(EDA)的价值
从外表来看,数据科学通常被认为完全是由高等统计学和机器学习技术组成。然而,另一个重要组成部分往往被低估或遗忘:探索性数据分析(EDA)。EDA指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索,通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。在深入机器学习或统计建模之前,EDA是一个重要的步骤,这是因为它提供了为现有问题开发适当模型并正确解释其结果所需的来龙去脉。
但随着工具的兴起,只需要简单的将数据提供给黑盒就可以轻松实现强大的机器学习算法,因此略过EDA这一步将变得异常诱惑。然而简单地将数据提供给黑盒并不总是一个好主意——这是因为EDA对于所有类型的数据科学问题具有关键价值。
EDA对数据科学家而言是有价值的,这是因为EDA能确保他们生成的结果是有效的、能被正确解析以及适用于所需的业务环境。在确保技术交付成果之外,EDA还通过确认正在提出正确的问题而不是基于假设调查以及通过提供问题的背景来确保数据科学家的输的出潜在的价值可以最大化。
这篇文章将高度概述EDA通常涉及的内容,然后描述EDA对于成功建模和解释其结果至关重要的三个主要方式。无论您是数据科学家还是数据科学的消费者,希望在阅读本文后,您将了解为什么EDA应该是在项目数据科学操作中的关键一部分。
什么是EDA?
尽管EDA已经存在于数据分析,据说1977年约翰·图克(John W. Tukey)写的“探索性数据分析”一书中已经创造了这个词并发展了这个领域。概括来讲,EDA用于理解和总结数据集的内容,通常用于调查特定问题或更高级的建模。EDA通常很大程度上依赖于可视化数据来评估模式并利用一些定量方法来描述数据。
EDA通常涉及以下几种方法的组合:
原始数据集中每个字段的单变量可视化和汇总统计(见图1)
用于评估数据集中每个变量与感兴趣目标变量之间的关系的双变量可视化和汇总统计(例如,时间流失,花费)(见图2)
多元可视化以了解数据中不同字段之间的交互作用(见图3)。
降维以了解数据中的字段,这些字段占据了观察值之间的最大差异,并允许处理减少的数据量。
通过将数据折叠成几个小数据点让观察值聚类成有区别的小组,可以更容易地识别行为模式(参见图4)
通过这些方法,数据科学家验证假设并识别有助于理解问题和模型选择的模式,为数据建立直觉以确保高质量分析,并验证数据是按预期的方式生成。
验证假设和模式识别
EDA的主要目的之一是在假设任何事情之前查看数据,这是很重要的。首先,数据科学家可以验证在构建模型时可能已经做出的任何假设,或者是使用某些算法所必需的假设。其次,对数据的自由假设探索可以帮助识别模式以及观察到行为的潜在原因,这可能有助于回答遇到的问题或告知建模的选择。
通常有两种类型的假设可能影响分析的有效性:技术和商业。正确使用特定的分析模型和算法依赖于具体的技术假设是否正确,例如变量之间没有共线性、数据中的方差与数据值无关以及数据是否以某种方式丢失或损坏。在EDA中,评估各种技术假设以帮助选择对手头数据和任务而言的最佳模型。如果没有这样的评估,可以使用一个模型来违反那些假设使得该模型不再适用于有关数据,并可能导致对组织有负面影响的不良预测和不正确的结论。
第二种假设,商业假设有点更难以捉摸。通过对模型的了解,数据科学家知道每种类型的假设必须对其使用有效并可以系统地检查它们。另一方面,商业假设可以完全无法识别并深深地纠缠于问题及其框架。有一次,我们正在与一位正在试图了解用户与他们的应用程序如何进行互动以及发生什么交互信号可能会流失的用户的客户进行合作,他们深深地嵌入在假设出现问题的框架中,他们的假设是用户群是由有经验的厨师组成,并希望通过复杂的食谱提高他们的烹饪水平。事实上,用户群主要由无经验的用户组成,试图找到快速、易于准备的食物的食谱。当我们发现客户假设是错误后,他们不得不开始理解一整套新的问题以告知之后的应用开发。
在验证这些技术和商业假设的同时,数据科学家将系统地评估每个数据字段的内容及其与其他变量的相互作用,特别是表示企业想要了解或预测的行为的关键度量(例如使用生命周期、支出)。人类是自然模式识别器,通过以不同的方式对数据进行详尽的可视化,并将这些可视化策略性地配置在一起,数据科学家可以利用其模式识别能力来识别行为的潜在原因、识别潜在的有问题或虚假的数据点以及开发可以通知其分析和模式的假设。
建立对数据的直觉
为什么EDA是更先进的建模前采取的必要步骤,还有一个较为具体的原因是数据科学家需要亲自熟练掌握数据,并为培养一种对数据是什么的直觉,这种直觉对于能够快速识别何时出现问题尤为重要。比如在EDA中,绘制使用寿命与年龄曲线并进行比较,可以发现年轻用户倾向于停留某个产品的时间更长,那么结论是当年龄下降时会增加使用周期。如果训练的模型显示不同的行为,就会很快意识到应该调查发生了什么,并确保没有犯任何的错误。没有EDA,数据突出的问题或模型的实施中的错误会被长时间忽视,这可能会导致基于错误信息做出决策。
验证数据是不是像你认为的那样
在Tukey风格的EDA中,分析师通常很清楚他们分析的数据是如何生成的。然而,现在随着组织内部生成大量数据集以及获取的第三方数据,分析师通常远离数据生成的过程。如果数据不是你认为的那样,那么你的结果可能会受到不良影响,更糟的是误解后采取的行动。
这个例子会展示数据生成的方式可能被误解,让我们来具体看看该例子:A公司正在尝试预测哪些用户将订阅新产品以瞄准其产品定位。他们正在努力开发一个模型,但每次尝试都会导致糟糕的预测结果。然后有人认为执行广泛的EDA,他们最初认为这是没有必要的。但结果表明,预测的用户是控制员工订阅的产品的较大企业账户的一部分。这种控制意味着用户可以以各种方式在数据中看起来完全相同,但具有不同的目标结果,这意味着个人层面的数据几乎没有能力告知预测。在这种情形中,EDA不仅在技术问题上暴露了所采取方法的技术问题,而且还表明出现的错误问题。如果用户的行为受到其组织的控制,则无法对用户进行定位。该公司需要瞄准并预测新产品订阅的企业帐户。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16