决策树缺点和注意事项:
决策树的最大缺点是原理中的贪心算法。因此它所做的选择只能是某种意义上的局部最优选择。
若目标变量是连续变量,那么决策树就不使用了,改用回归模型
若某些自变量的类别种类较多,或者自变量是区间型时,决策树过拟合的危险会增大。这种情况需要分箱或多次模型验证,确保其具有稳定性。
对区间型变量进行分箱操作时,无论是否考虑了顺序因素,都有可能因为分箱丧失了某些重要信息,尤其是当分箱前的区间型便变量与目标变量有明显的线性关系时,这种分箱造成的损失更为明显。
逻辑回归(目标变量是二元变量)
建模数据量不能太少,目标变量中每个类别所对应的样本数量要足够充分,才能支持建模
排除共线性问题(自变量间相关性很大)
异常值会给模型带来很大干扰,要剔除。
逻辑回归不能处理缺失值,所以之前应对缺失值进行适当处理。
线性回归缺点和注意事项
对异常值敏感,应剔除。
只适合处理线性关系,若自变量和因变量间有比较强的非线性关系,应该对自变量进行一定的转换,比如取对数、开方、取平方根等。
多元线性回归应用有一定的前提假设,自变量是确定的变量,而不是随机变量,自变量间没有线性相关,随机误差呈正太分布,随机误差项具有均值为0以及等方差性。
线性回归和逻辑回归的区别
线性回归针对的目标变量是区间型的,逻辑回归针对的目标变量是类别型的
线性回归模型的目标变量和自变量之间的关系假设是线性相关的,逻辑回归模型中的目标变量和自变量是非线性的
线性回归中通常会用假设,对应于自变量x的某个值,目标变量y的观察值是服从正太分布的。逻辑回归中目标变量y是服从二项分布0和1或者多项分布的
逻辑回归中不存在线性回归中常见的残差
参数估值上,线性回归采用最小平方法,逻辑回归采用最大似染法。
过拟合产生原因:
样本里噪声数据干扰过大。样本噪声大到模型过分记住了噪声特征,反而忽略了真实的输入输出间的关系。
建模时的逻辑假设应用到模型时不成立了。任何预测模型都是在假设的基础上才可以使用的,比如业务环节没有发生显著变化,数据符合某种分布等,如果上述假设违反了业务场景,那么该模型就不能用了。
建模时使用了太多输入变量。同噪声数据相似,不分析数据特征,把所有的变量交给机器去处理,撞大运,一个稳定优良的模型一定要遵循输入变量的少而精的原则。
若用决策树,没有对决策树的生长进行合理的限制和剪枝,由着决策树自己生长,可能会过分拟合原始数据,对新数据一塌糊涂。
建模样本抽取错误。包括但不限于样本数量少,抽样方法错误,抽样时没有足够正确的考虑业务场景和特点,以致于抽出的样本数据不能足够有效的代表业务逻辑和业务场景。
放置过拟合的手段:
合理有效抽样,包括分层抽样,过抽样等,从而用不同的样本去检验模型。
交叉检验,这是目前业界防止过拟合常用手段。
数据若太少,不要用神经网络模型(深度学习),否则是浅度学习,而且一定要实现筛选输入变量,不要把所有变量一股脑放进去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13