深入理解python多进程编程
1、python多进程编程背景
python中的多进程最大的好处就是充分利用多核cpu的资源,不像python中的多线程,受制于GIL的限制,从而只能进行cpu分配,在python的多进程中,适合于所有的场合,基本上能用多线程的,那么基本上就能用多进程。
在进行多进程编程的时候,其实和多线程差不多,在多线程的包threading中,存在一个线程类Thread,在其中有三种方法来创建一个线程,启动线程,其实在多进程编程中,存在一个进程类Process,也可以使用那集中方法来使用;在多线程中,内存中的数据是可以直接共享的,例如list等,但是在多进程中,内存数据是不能共享的,从而需要用单独的数据结构来处理共享的数据;在多线程中,数据共享,要保证数据的正确性,从而必须要有所,但是在多进程中,锁的考虑应该很少,因为进程是不共享内存信息的,进程之间的交互数据必须要通过特殊的数据结构,在多进程中,主要的内容如下图:
2、多进程的类Process
多进程的类Process和多线程的类Thread差不多的方法,两者的接口基本相同,具体看以下的代码:
在上面例子中可以看到,多进程和多线程的API接口是一样一样的,显示创建进程,然后进行start开始运行,然后join等待进程结束。
在需要执行的函数中,打印出了进程的id和pid,从而可以看到父进程和子进程的id号,在linu中,进程主要是使用fork出来的,在创建进程的时候可以查询到父进程和子进程的id号,而在多线程中是无法找到线程的id,执行效果如下:
在操作系统中查询的id的时候,最好用pstree,清晰:
├─sshd(1508)─┬─sshd(2259)───bash(2261)───python(7520)─┬─python(7521) │ │ ├─python(7522) │ │ ├─python(7523) │ │ ├─python(7524) │ │ ├─python(7525) │ │ ├─python(7526) │ │ ├─python(7527) │ │ ├─python(7528) │ │ ├─python(7529) │ │ ├─python(7530) │ │ ├─python(7531) │ │ └─python(7532)
在进行运行的时候,可以看到,如果没有join语句,那么主进程是不会等待子进程结束的,是一直会执行下去,然后再等待子进程的执行。
在多进程的时候,说,我怎么得到多进程的返回值呢?然后写了下面的代码:
尝试从结果中返回值,从而在主进程中得到子进程的返回值,然而,,,并没有结果,后来一想,在进程中,进程之间是不共享内存的 ,那么使用list来存放数据显然是不可行的,进程之间的交互必须依赖于特殊的数据结构,从而以上的代码仅仅是执行进程,不能得到进程的返回值,但是以上代码修改为线程,那么是可以得到返回值的。
3、进程间的交互Queue
进程间交互的时候,首先就可以使用在多线程里面一样的Queue结构,但是在多进程中,必须使用multiprocessing里的Queue,代码如下:
其实这个是上面例子的改进,在其中,并没有使用什么其他的代码,主要就是使用Queue来保存数据,从而可以达到进程间交换数据的目的。
在进行使用Queue的时候,其实用的是socket,感觉,因为在其中使用的还是发送send,然后是接收recv。
在进行数据交互的时候,其实是父进程和所有的子进程进行数据交互,所有的子进程之间基本是没有交互的,除非,但是,也是可以的,例如,每个进程去Queue中取数据,但是这个时候应该是要考虑锁,不然可能会造成数据混乱。
4、 进程之间交互Pipe
在进程之间交互数据的时候还可以使用Pipe,代码如下:
在以上代码中,主要是使用Pipe中返回的两个socket来进行传输和接收数据,在父进程中,使用的是parent_conn,在子进程中使用的是child_conn,从而子进程发送数据的方法send,而在父进程中进行接收方法recv
最好的地方在于,明确的知道收发的次数,但是如果某个出现异常,那么估计pipe不能使用了。
5、进程池pool
其实在使用多进程的时候,感觉使用pool是最方便的,在多线程中是不存在pool的。
在使用pool的时候,可以限制每次的进程数,也就是剩余的进程是在排队,而只有在设定的数量的进程在运行,在默认的情况下,进程是cpu的个数,也就是根据multiprocessing.cpu_count()得出的结果。
在poo中,有两个方法,一个是map一个是imap,其实这两方法超级方便,在执行结束之后,可以得到每个进程的返回结果,但是缺点就是每次的时候,只能有一个参数,也就是在执行的函数中,最多是只有一个参数的,否则,需要使用组合参数的方法,代码如下所示:
在使用map的时候,直接返回的一个是一个list,从而这个list也就是函数执行的结果,而在imap中,返回的是一个由结果组成的迭代器,如果需要使用多个参数的话,那么估计需要*args,从而使用参数args。
在使用apply.async的时候,可以直接使用多个参数,如下所示:
在进行得到各个结果的时候,注意使用了一个list来进行append,要不然在得到结果get的时候会阻塞进程,从而将多进程编程了单进程,从而使用了一个list来存放相关的结果,在进行得到get数据的时候,可以设置超时时间,也就是get(timeout=5),这种设置。
总结:
在进行多进程编程的时候,注意进程之间的交互,在执行函数之后,如何得到执行函数的结果,可以使用特殊的数据结构,例如Queue或者Pipe或者其他,在使用pool的时候,可以直接得到结果,map和imap都是直接得到一个list和可迭代对象,而apply_async得到的结果需要用一个list装起来,然后得到每个结果。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13