三步走提高数据库安全防护
数据库,作为一种数据的结合体,由于它的结构性和系统性,必将成为未来企业甚至是国家最常使用的数据集合存在形式,对于它的防护,我们必须一步一个脚印,做到缜密而又细致的防护才能避免这个数据堡垒从内部崩塌。同时对于那些敏感的数据,采用具有本源防护效果的加密软件无疑是最佳的选择!信息时代,我们的身边充斥各种数据。在信息处理终端和传输、交流的互联网上,数据更是当之无愧的主角。在数据中,有一种综合体,它是数据的堡垒,同时也是个人、企业甚至是国家最依赖的数据综合体——数据库。数据库的形成让人们调用数据,处理数据、分类数据变得更容易。而数据库的重要性也使得它的防护变得异常重要。
数据泄漏的安全问题正迅速增长
据统计,发生在2012年的数据泄露事件达到了前所未有的高度,共计1428起。然而,就在三年之前,此类事件只有727起。
很显然,与以往任何时候相比,各类机构如今更容易遭遇大规模数据泄露的侵袭。原因何在?越来越多的数据以在线形式出现在越来越多的地方,从而更加容易被访问。黑客们在获取数据方面变得更加成熟与有效。与此同时,网络变得更加复杂也更加容易被渗透。为了保护数据,各个机构需要掌握更多安全知识并付出更多努力。
意图染指数据库的犯罪份子正蠢蠢欲动
对于网络犯罪分子来说,数据库(包括结构化数据)是他们梦寐以求的猎物。对于心怀不轨的人们来说,安全性不足的数据库能够让他们梦想成真。然而,遭遇数据泄露的机构面对的却是一场成本高昂的可怕的噩梦。在保护重要数据方面,很多机构并不完全了解自己掌握哪些数据、如何储存、数据动向及其使用者的情况。最近一份数据泄露调查报告显示,92% 以上记录在案的数据泄露事件都与数据库有关。
数据库本身的性能问题导致了安全防护优先级的“不被重视”
将数据库安全搁置在优先名单最下方的合理原因有很多。数据库的可用性要求非常高,因此补丁周期很长而且对于传统的 DBA (数据库管理) 安全软件不甚友好。理想的安全解决方案需要有效保护结构化数据并且不能对数据功能与可用性造成明显的影响。
而一个几乎普遍存在的问题就是:人们未能了解机密信息并对其进行合理的分类从而有效预防各类数据损失。很多 DLP(数据丢失防护)解决方案能够处理数据库中储存的结构数据格式,例如社会保险或银行账户号码。然而,健康记录或病例这样的自定义数据格式怎么办?诸如电邮、文本、PDF
与图形等非结构性敏感数据的快速增长更是造成了严峻的挑战。2011 IDC
研究表明,非结构化数据的增速超过了结构化数据并且将在未来十年内占到所有数据的 90%。此类数据在企业内部流转并且经过多种设备进行储存与访问。
数据库的监管力度问题也是一大隐患
有时候,人们很难确定敏感数据是否遭遇了危险或者流转到了何地。机密数据的拷贝份量往往超过组织所知晓的数字。数据库经常被拷贝后用于测试与研发并且添加或升级新代码。
这些数据库在哪里?它们是否打上了补丁或者经过了升级?漫不经心的安全操作可能使得人们无法有效追查此类情况。了解数据库弱点的网络犯罪分子能够利用这些恶意数据库发起网络攻击。
“任谁可以访问数据库”成了数据安全问题的症结之一
另外一个被人们忽视的数据安全问题就是数据访问——什么人可以访问数据,他们如何使用数据。如今,重要数据可供员工与“值得信任”的他人使用:合约商、供应商与合作伙伴。大家都希望可以随时在任何地方访问数据。通常,DBA (数据库管理员)为用户提供授权,而后者就能够接触到工作所需以外的更多信息。更为理想的数据安全需要采用“最少权限”原则——也就是根据角色或工作职能需要来授予权限。
专家支招 三步走提高数据库安全防护
【发现】对于 DLP(数据丢失防护)来说,首先,数据发现至关重要。这其中包括确定文件所有人以及他们掌握文件的原因和使用方法。确认文件使用者以及文件是否得到保护的最佳方法就是扫描服务器、数据库、硬盘与网络设备。这样便可以知道数据在网络中的生成、储存、访问、更改与传送的方法,进而探测、识别、分析与了解静态数据与动态数据的情况。
【分级】其次,必须通过政策与控制找到储存在资料库中的静态数据并且对其进行分级与保护。高级数据库探查软件能够搜索整个网络从而找到数据生产情况与恶意数据库并扫描资料库。人们应该定期进行网络扫描,从而查找那些违反政策规定的行为并且发送警报以立刻进行纠正。能够对数据进行索引与分级的解决方案使得人们可以更加轻松地去询问与了解敏感数据及其使用情况、所有者、储存地与扩增情况。此外,数据库中的数据应该得到加密与备份。
【防护】我们还需要明白那些在网络中流转的动态数据也是有效数据探查的重要内容。捕捉技术能够收集与记录数周、甚至数月的网络流量。它们分析数据类型从而确定标准数据与专有数据,然后制定有效的政策以防止和控制数据内容流传到网络之外。如果想要防止内部人士恶意破坏网络,那么就必须要对数据进行加密。当设备损失或失窃时,还要防止他人进行未授权访问。
对于数据库或者数据本身来说,各种防护策略最好的选择就是加密。因为加密的特殊性,数据即使由于种种原因泄漏,加密防护依然存在,真实内容也不会暴露,可以说是一种彻底、长久的防护之法。在现今多样的安全环境和防护需求的背景下,使用国际先进的多模加密技术无疑是最好的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31