诺奖为什么致敬大数据
绿叶如何光合作用?
化学家说:植物在可见光照射下,将二氧化碳和水转化为有机物,并释放出氧气。
为什么吃药能治病?
化学家说:因为有效的药物分子在体内,会主动锁定目标,消灭病毒。
……
化学家如何看得见微观世界的现象?原因是他们采用了一种“在复杂化学系统中发展了多尺度模型”的观测方法。
北京时间10月9日17时45分,2013年度诺贝尔化学奖授予了马丁·卡普拉斯、迈克尔·莱维特和阿里耶·瓦谢勒。他们的获奖原因,正是你所看到的上述科学成果。
通俗点说,它就是通过计算机筛选大量数据,从而模拟肉眼所看不到的变化是如何发生的。在告别“小棍棍”实验,现代科学通过建模计算,无中生有,系统生长。毫无疑问,这是颁给大数据时代的化学奖。
虚拟化学实验
在诺奖官网上,写着三位科学家的获奖原因:“在复杂化学系统中发展了多尺度模型。”
这是化学领域一个质的飞跃。在过去,科学家常用塑料球和小棍棍进行分子建模。“一旦真实体系再为微观,理论化学则束手无策。”中国科技大学化学物理系教授江俊说。
不妨做个联想。化学反应以光速发生着。在百万分之一秒之内,电子从一个原子核跳到另一个。一旦涉及到一个关键反应,试管根本没办法研究这么短的时间里都发生了什么。在这一时期,理论化学也经历了最艰难的困境。
上世纪70年代,计算机“登场”了。马丁·卡普拉斯、迈克尔·莱维特和阿里耶·瓦谢勒想到了模拟,通过经典物理和量子物理两种思路。
不过,它们看起来似乎水火不容。经典物理的优点是计算简单,并且可以被应用于很大的分子,但它无法提供模拟化学反应的方法;量子物理可以通过计算机研究化学反应,但却只能应用于小分子。
接下来,他们三人要做的是优化—将两个物理体系的精华结合在一起,并提取出在经典物理和量子物理领域都适用的研究方法。例如,要模拟对药物在体内如何与靶蛋白进行耦合,计算机会对靶蛋白中能与指定药物相互作用的原子进行量子理论的计算。大蛋白的其余部分则利用相对没那么费力的经典物理方法进行模拟。
“整个分工是这样完成的:最最关键的反应核心,尤其是反应的自由电子,就用量子物理方法;然后,外围的原子反应,通过经典物理分析;最外层的溶液,全部当成是均一的电介质。”江俊说。
“他们三人的建模工作,开创了一个新的方向。”江俊认为,
反映真实情况的计算机模型已经成为了现在化学界大多数新进展的关键。时至今日,计算机对化学家的作用已经和试管一样重要。因为计算机对化学反应的模拟能够非常逼真,化学家们已经能够通过计算机预测传统实验的结果。
进入大数据时代
“用计算机取代真实实验的尝试,这是颁给大数据时代的化学奖。”浙江大学化学系计算化学教授王琦认为。
以观测光合作用的发生为例。在巨大的蛋白质分子可能包含数以十万计的原子,在其中存在一个很小的区域,称作反应中心。正是在这里水分子被分解。而实际上,仅有少部分的原子参与到这个反应过程。
我们可以想象到的是:当阳光照射到绿叶上,这些蛋白质就会充斥能量,其整个原子结构都会发生改变。化学家们则通过计算机模拟了头脑中的这幅景象。
“这是一个非常庞大的数据筛选工程。”王琦说。以模拟一个蛋白质运动轨迹为例,如果我们的观察时间控制在一个微秒以内,那么这中间产生的数据量大概是以G,甚至T为单位。要知道,1G的容量按常见的800万像素照片来说,格式为jpg,就能达到500~600张照片。
看到这里,你或许会问:为一个小小的反应,处理这么多复杂的数据量值得吗?当然值,仅仅是发生在植物绿叶之中的神奇化学反应,就让我们的大气中充满氧气,而这是地球上的生命体赖以生存的基础。往更深处想:如果你能模拟光合机制,那么就将制造出更加高效的太阳能电池板;当水分子分解产生氧气,也就产生了可以被用作能源的氢气。如果你成功了,你就能帮助地球对抗温室效应。
构建“数字生命”
“大数据和计算机的齐头并进发展,将有利于我们更深入地了解万物的整个化学过程。”王琦认为,卡普拉斯、莱维特和瓦谢勒所发明的多尺度模型的意义在于其具有普遍性,可用来研究各种各样的化学过程,从生命分子到工业化学过程等。科学家们机动车的燃料,药品设计甚至疾病筛查等。
其研究进展还不仅如此,迈克尔·莱维特曾在一份刊物中谈到其梦想:在分子层面上模拟鲜活有机体,构建“数字生命”,这是一个颇具吸引力的想法。巧合的是,在去年此时,诺贝尔物理学奖对未来不远处的量子计算机情有独钟;而在这一年,大数据、云计算踩着科技的“风火轮”呼啸而来。试问,莱维特的梦想还会远吗?
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20