诺奖为什么致敬大数据
绿叶如何光合作用?
化学家说:植物在可见光照射下,将二氧化碳和水转化为有机物,并释放出氧气。
为什么吃药能治病?
化学家说:因为有效的药物分子在体内,会主动锁定目标,消灭病毒。
……
化学家如何看得见微观世界的现象?原因是他们采用了一种“在复杂化学系统中发展了多尺度模型”的观测方法。
北京时间10月9日17时45分,2013年度诺贝尔化学奖授予了马丁·卡普拉斯、迈克尔·莱维特和阿里耶·瓦谢勒。他们的获奖原因,正是你所看到的上述科学成果。
通俗点说,它就是通过计算机筛选大量数据,从而模拟肉眼所看不到的变化是如何发生的。在告别“小棍棍”实验,现代科学通过建模计算,无中生有,系统生长。毫无疑问,这是颁给大数据时代的化学奖。
虚拟化学实验
在诺奖官网上,写着三位科学家的获奖原因:“在复杂化学系统中发展了多尺度模型。”
这是化学领域一个质的飞跃。在过去,科学家常用塑料球和小棍棍进行分子建模。“一旦真实体系再为微观,理论化学则束手无策。”中国科技大学化学物理系教授江俊说。
不妨做个联想。化学反应以光速发生着。在百万分之一秒之内,电子从一个原子核跳到另一个。一旦涉及到一个关键反应,试管根本没办法研究这么短的时间里都发生了什么。在这一时期,理论化学也经历了最艰难的困境。
上世纪70年代,计算机“登场”了。马丁·卡普拉斯、迈克尔·莱维特和阿里耶·瓦谢勒想到了模拟,通过经典物理和量子物理两种思路。
不过,它们看起来似乎水火不容。经典物理的优点是计算简单,并且可以被应用于很大的分子,但它无法提供模拟化学反应的方法;量子物理可以通过计算机研究化学反应,但却只能应用于小分子。
接下来,他们三人要做的是优化—将两个物理体系的精华结合在一起,并提取出在经典物理和量子物理领域都适用的研究方法。例如,要模拟对药物在体内如何与靶蛋白进行耦合,计算机会对靶蛋白中能与指定药物相互作用的原子进行量子理论的计算。大蛋白的其余部分则利用相对没那么费力的经典物理方法进行模拟。
“整个分工是这样完成的:最最关键的反应核心,尤其是反应的自由电子,就用量子物理方法;然后,外围的原子反应,通过经典物理分析;最外层的溶液,全部当成是均一的电介质。”江俊说。
“他们三人的建模工作,开创了一个新的方向。”江俊认为,
反映真实情况的计算机模型已经成为了现在化学界大多数新进展的关键。时至今日,计算机对化学家的作用已经和试管一样重要。因为计算机对化学反应的模拟能够非常逼真,化学家们已经能够通过计算机预测传统实验的结果。
进入大数据时代
“用计算机取代真实实验的尝试,这是颁给大数据时代的化学奖。”浙江大学化学系计算化学教授王琦认为。
以观测光合作用的发生为例。在巨大的蛋白质分子可能包含数以十万计的原子,在其中存在一个很小的区域,称作反应中心。正是在这里水分子被分解。而实际上,仅有少部分的原子参与到这个反应过程。
我们可以想象到的是:当阳光照射到绿叶上,这些蛋白质就会充斥能量,其整个原子结构都会发生改变。化学家们则通过计算机模拟了头脑中的这幅景象。
“这是一个非常庞大的数据筛选工程。”王琦说。以模拟一个蛋白质运动轨迹为例,如果我们的观察时间控制在一个微秒以内,那么这中间产生的数据量大概是以G,甚至T为单位。要知道,1G的容量按常见的800万像素照片来说,格式为jpg,就能达到500~600张照片。
看到这里,你或许会问:为一个小小的反应,处理这么多复杂的数据量值得吗?当然值,仅仅是发生在植物绿叶之中的神奇化学反应,就让我们的大气中充满氧气,而这是地球上的生命体赖以生存的基础。往更深处想:如果你能模拟光合机制,那么就将制造出更加高效的太阳能电池板;当水分子分解产生氧气,也就产生了可以被用作能源的氢气。如果你成功了,你就能帮助地球对抗温室效应。
构建“数字生命”
“大数据和计算机的齐头并进发展,将有利于我们更深入地了解万物的整个化学过程。”王琦认为,卡普拉斯、莱维特和瓦谢勒所发明的多尺度模型的意义在于其具有普遍性,可用来研究各种各样的化学过程,从生命分子到工业化学过程等。科学家们机动车的燃料,药品设计甚至疾病筛查等。
其研究进展还不仅如此,迈克尔·莱维特曾在一份刊物中谈到其梦想:在分子层面上模拟鲜活有机体,构建“数字生命”,这是一个颇具吸引力的想法。巧合的是,在去年此时,诺贝尔物理学奖对未来不远处的量子计算机情有独钟;而在这一年,大数据、云计算踩着科技的“风火轮”呼啸而来。试问,莱维特的梦想还会远吗?
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10