使用Python进行描述性统计
1 描述性统计是什么?
描述性统计是借助图表或者总结性的数值来描述数据的统计手段。数据挖掘工作的数据分析阶段,我们可借助描述性统计来描绘或总结数据的基本情况,一来可以梳理自己的思维,二来可以更好地向他人展示数据分析结果。数值分析的过程中,我们往往要计算出数据的统计特征,用来做科学计算的NumPy和SciPy工具可以满足我们的需求。Matpotlob工具可用来绘制图,满足图分析的需求。
2 使用NumPy和SciPy进行数值分析
2.1 基本概念
与Python中原生的List类型不同,Numpy中用ndarray类型来描述一组数据:
from numpy import array
from numpy.random import normal, randint
#使用List来创造一组数据
data = [1, 2, 3]
#使用ndarray来创造一组数据
data = array([1, 2, 3])
#创造一组服从正态分布的定量数据
data = normal(0, 10, size=10)
#创造一组服从均匀分布的定性数据
data = randint(0, 10, size=10)
2.2 中心位置(均值、中位数、众数)
数据的中心位置是我们最容易想到的数据特征。借由中心位置,我们可以知道数据的一个平均情况,如果要对新数据进行预测,那么平均情况是非常直观地选择。数据的中心位置可分为均值(Mean),中位数(Median),众数(Mode)。其中均值和中位数用于定量的数据,众数用于定性的数据。
对于定量数据(Data)来说,均值是总和除以总量(N),中位数是数值大小位于中间(奇偶总量处理不同)的值:
均值相对中位数来说,包含的信息量更大,但是容易受异常的影响。使用NumPy计算均值与中位数:
from numpy import mean, median
#计算均值
mean(data)
#计算中位数
median(data)
对于定性数据来说,众数是出现次数最多的值,使用SciPy计算众数:
[python] view plain copy
from scipy.stats import mode
#计算众数
mode(data)
2.3 发散程度(极差、方差、标准差、变异系数)
对数据的中心位置有所了解以后,一般我们会想要知道数据以中心位置为标准有多发散。如果以中心位置来预测新数据,那么发散程度决定了预测的准确性。数据的发散程度可用极差(PTP)、方差(Variance)、标准差(STD)、变异系数(CV)来衡量,它们的计算方法如下:
极差是只考虑了最大值和最小值的发散程度指标,相对来说,方差包含了更多的信息,标准差基于方差但是与原始数据同量级,变异系数基于标准差但是进行了无量纲处理。使用NumPy计算极差、方差、标准差和变异系数:
2.4 偏差程度(z-分数)
之前提到均值容易受异常值影响,那么如何衡量偏差,偏差到多少算异常是两个必须要解决的问题。定义z-分数(Z-Score)为测量值距均值相差的标准差数目:
当标准差不为0且不为较接近于0的数时,z-分数是有意义的,使用NumPy计算z-分数:
通常来说,z-分数的绝对值大于3将视为异常
2.5 相关程度
有两组数据时,我们关心这两组数据是否相关,相关程度有多少。用协方差(COV)和相关系数(CORRCOEF)来衡量相关程度:
协方差的绝对值越大表示相关程度越大,协方差为正值表示正相关,负值为负相关,0为不相关。相关系数是基于协方差但进行了无量纲处理。使用NumPy计算协方差和相关系数:
2.6 回顾
3 使用Matplotlib进行图分析
3.1 基本概念
使用图分析可以更加直观地展示数据的分布(频数分析)和关系(关系分析)。柱状图和饼形图是对定性数据进行频数分析的常用工具,使用前需将每一类的频数计算出来。直方图和累积曲线是对定量数据进行频数分析的常用工具,直方图对应密度函数而累积曲线对应分布函数。散点图可用来对两组数据的关系进行描述。在没有分析目标时,需要对数据进行探索性的分析,箱形图将帮助我们完成这一任务。
在此,我们使用一组容量为10000的男学生身高,体重,成绩数据来讲解如何使用Matplotlib绘制以上图形,创建数据的代码如下
柱状图是以柱的高度来指代某种类型的频数,使用Matplotlib对成绩这一定性变量绘制柱状图的代码如下:
而饼形图是以扇形的面积来指代某种类型的频率,使用Matplotlib对成绩这一定性变量绘制饼形图的代码如下:
3.2.2 定量分析(直方图、累积曲线)
直方图类似于柱状图,是用柱的高度来指代频数,不同的是其将定量数据划分为若干连续的区间,在这些连续的区间上绘制柱。使用Matplotlib对身高这一定量变量绘制直方图的代码如下:
使用Matplotlib对身高这一定量变量绘制累积曲线的代码如下:
3.3 关系分析(散点图)
在散点图中,分别以自变量和因变量作为横纵坐标。当自变量与因变量线性相关时,在散点图中,点近似分布在一条直线上。我们以身高作为自变量,体重作为因变量,讨论身高对体重的影响。使用Matplotlib绘制散点图的代码如下:
3.4 探索分析(箱形图)
在不明确数据分析的目标时,我们对数据进行一些探索性的分析,通过我们可以知道数据的中心位置,发散程度以及偏差程度。使用Matplotlib绘制关于身高的箱形图的代码如下:
绘制出来的箱形图中,包含3种信息:
3.5 回顾
4 总结
描述性统计是容易操作,直观简洁的数据分析手段。但是由于简单,对多元变量的关系难以描述。现实生活中,自变量通常是多元的:决定体重不仅有身高,还有饮食习惯,肥胖基因等等因素。通过一些高级的数据处理手段,我们可以对多元变量进行处理,例如特征工程中,可以使用互信息方法来选择多个对因变量有较强相关性的自变量作为特征,还可以使用主成分分析法来消除一些冗余的自变量来降低运算复杂度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30