初学者如何从零学习人工智能
此文是想要进入人工智能这个领域、但不知道从哪里开始的初学者最佳的学习资源列表。
一、机器学习
有关机器学习领域的最佳介绍,请观看Coursera的Andrew Ng机器学习课程。 它解释了基本概念,并让你很好地理解最重要的算法。
有关ML算法的简要概述,查看这个TutsPlus课程“Machine Learning Distilled”。
“Programming Collective Intelligence”这本书是一个很好的资源,可以学习ML 算法在Python中的实际实现。 它需要你通过许多实践项目,涵盖所有必要的基础。
这些不错的资源你可能也感兴趣:
1、Perer Norvig 的Udacity Course on ML(ML Udacity 课程)
2、Tom Mitchell 在卡梅隆大学教授的 Another course on ML(另一门ML程)
3、YouTube上的机器学习教程 mathematicalmonk
二、深度学习
关于深度学习的最佳介绍,我遇到最好的是 Deep Learning With Python。它不会深入到困难的数学,也没有一个超长列表的先决条件,而是描述了一个简单的方法开始DL,解释如何快速开始构建并学习实践上的一切。它解释了最先进的工具(Keras,TensorFlow),并带你通过几个实际项目,解释如何在所有最好的DL应用程序中实现最先进的结果。
在Google上也有一个great introductory DL course,还有Sephen Welch的great explanation of neural networks。
之后,为了更深入地了解,这里还有一些有趣的资源:
1、Geoffrey Hinton 的coursera 课程“Neural Networks for Machine Learning”。这门课程会带你了解 ANN 的经典问题——MNIST 字符识别的过程,并将深入解释一切。
2、MIT Deep Learning(深度学习)一书。
3、UFLDL tutorial by Stanford (斯坦福的 UFLDL 教程)
4、deeplearning.net教程
5、Michael Nielsen 的 Neural Networks and Deep Learning(神经网络和深度学习)一书
6、Simon O. Haykin 的Neural Networks and Learning Machines (神经网络和机器学习)一书
三、人工智能
“Artificial Intelligence: A Modern Approach (AIMA)” (人工智能:现代方法) 是关于“守旧派” AI最好的一本书籍。这本书总体概述了人工智能领域,并解释了你需要了解的所有基本概念。
来自加州大学伯克利分校的 Artificial Intelligence course(人工智能课程)是一系列优秀的视频讲座,通过一种非常有趣的实践项目(训练AI玩Pacman游戏 )来解释基本知识。我推荐在视频的同时可以一起阅读AIMA,因为它是基于这本书,并从不同的角度解释了很多类似的概念,使他们更容易理解。它的讲解相对较深,对初学者来说是非常不错的资源。
大脑如何工作
如果你对人工智能感兴趣,你可能很想知道人的大脑是怎么工作的,下面的几本书会通过直观有趣的方式来解释最好的现代理论。
1、Jeff Hawkins 的 On Intelligence(有声读物)
2、Gödel, Escher, Bach
我建议通过这两本书入门,它们能很好地向你解释大脑工作的一般理论。
其他资源:
Ray Kurzweil的 How to Create a Mind (如何创建一个头脑Ray Kurzweil) (有声读物).
Principles of Neural Science (神经科学原理)是我能找到的最好的书,深入NS。 它谈论的是核心科学,神经解剖等。 非常有趣,但也很长 – 我还在读它。
四、数学
以下是你开始学习AI需要了解的非常基本的数学概念:
微积分学
1、Khan Academy Calculus videos(可汗学院微积分视频)
2、MIT lectures on Multivariable Calculus(MIT关于多变量微积分的讲座)
线性代数
1、Khan Academy Linear Algebra videos(可汗学院线性代数视频)
2、MIT linear algebra videos by Gilbert Strang(Gilbert Strang的MIT线性代数视频)
3、Coding the Matrix (编码矩阵) – 布朗大学线程代数CS课程
概率和统计
1、可汗学院 Probability(概率)与 Statistics(统计)视频
2、edx probability course (edx概率课程)
五、计算机科学
要掌握AI,你要熟悉计算机科学和编程。
如果你刚刚开始,我建议阅读 Dive Into Python 3 (深入Python 3)这本书,你在Python编程中所需要的大部分知识都会提到。
要更深入地了解计算机编程的本质 – 看这个经典的 MIT course (MIT课程)。这是一门关于lisp和计算机科学的基础的课程,基于 CS -结构和计算机程序的解释中最有影响力的书之一。
六、其他资源
Metacademy – 是你知识的“包管理器”。 你可以使用这个伟大的工具来了解你需要学习不同的ML主题的所有先决条件。
kaggle – 机器学习平台
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13